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Abstract

La tesi si propone di costruire il complesso delle osservabili per la gravita
linearizzata su spazitempi Ricci-piatti. Dapprima si studiera la teoria da
un punto di vista classico con 'aiuto di tecniche di teoria dell’omotopia e
in seguito se ne sviluppera una quantizzazione nel contesto delle teorie di
campo omotope.

The aim of the thesis is to build the complex of observables for linearized
gravity on Ricci-flat spacetimes. Initially the theory will be studied in a
classical setting with the help of techniques from homotopy theory and
then its quantization in the context of homotopy AQFT will be developed.
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Introduction

Gauge theories are of great relevance in physics since they represent the framework used
to describe the fundamental interactions. General relativity, which is the state-of-the-
art description of gravitation, falls itself into this class of theories. Several attempts at
developing a strong axiomatic framework to describe and to quantize them have been
made in the past years, see [Dim92; SDH14; BDS14; BDHS14] for electromagnetism
and [FH13; BFR13; BDM14] for linearized gravity.

A powerful framework to study quantum field theories on Lorentzian manifolds,
i.e. on generic curved spacetimes, is Algebraic Quantum Field Theory (AQFT) [HK64;
BFV03; BDFY15]. Quantum field theory on curved backgrounds provides a first ap-
proximation aimed at combining gravity and quantum theory. As a matter of fact, the
gravitational field is treated classically within the framework of general relativity while
quantum fields are studied in their propagation on various spacetimes. This leads to
difficulties at adapting the usual Hilbert space formalism of quantum mechanics to this
scenario. To clarify ideas, a first problem is the impossibility to introduce a unique
Hilbert space for a theory which contains all physically relevant states. For example,
the Hilbert space which contains the vacuum state for the theory may not contain
the thermal state [FR19]. The algebraic formalism solves this problem by dividing the
study of a quantum system in two distinct steps. First, an algebra of observables 2l is
selected. It contains all information about dynamics, the canonical commutation rela-
tions (CCRs) and the causal properties of the system. This is, in a sense, an extension
of the Heisenberg picture of quantum mechanics, which emphasizes observables over
states. Then, an algebraic state, that is a functional p : A — C which is positive and
normalized, needs to be introduced. This allows us to associate to each observable a
number, that is interpreted as its expectation value. The state encodes information
about all non-local features and correlations of the quantum system. This approach
has the advantage of not having to fix an Hilbert space for the system once and for
all in order to describe it. Nevertheless, the usual description of quantum mechanics
is not lost. In fact, once an algebraic state is fixed the Gelfand-Naimark-Segal theo-
rem [BDH13; HW15] yields an Hilbert space H,, a normalized vector ¢ € H, and a
representation of the algebra 2l over H, such that the expectation values given by the
functional p correspond to those calculated according to the Born rule on . Hence,
the usual probabilistic interpretation of quantum mechanics is recovered.

The distinguishing feature of gauge theories is that their equations of motion exhibit
an invariance property with respect to a suitable class of transformations. This feature is



fundamental and it should not be neglected in the study of gauge theories. Hence, they
are traditionally quantized in terms of gauge-invariant on-shell observable algebras. This
means that the observables do not only implement the dynamics but they also keep track
of the gauge symmetry by requiring that they do not distinguish field configurations
that are linked by a gauge transformation. However, this approach was observed to
be in conflict with some crucial axioms of AQFT. In particular, these violations are
linked to the presence of topological charges in quantum gauge theories, i.e. electric and
magnetic fluxes in Abelian Yang-Mills theory which are expected from a physical point
of view [BDS14; BDHS14; Ben16; BBSS16]. Moreover, a second issue, more technical,
is related to poor local-to-global features of this formulation of gauge theories. For
example, there are some local-to-global constructions, see [DL12; SDH14], that lack to
encode features, like Dirac’s charge quantization and Aharonov-Bohm phases, that are
crucial from a physical point of view. It was later observed that this failure of gauge
theories to fulfill the AQFT axioms is due to the categorical structures of both classical
and quantum gauge theories which are ignored in the traditional AQFT setting.

An approach meant to resolve this conflict between AQFT and gauge theories has
been recently developed. It is the homotopy AQFT program, see e.g. [BSS15; BSS18;
BS19a; BS19b; BBS19; BSW19; BSW20], which suggests to refine the foundations of
AQFT in order to implement new notions from category theory. For linear gauge the-
ories, this approach requires field and solution spaces to have the structure of chain
complezes of vector spaces and quantum observable algebras to have the structure of
differential graded *-algebras. These structures have already been used in the study of
gauge theories within the BV-BRST formalism, see [Hol08; FR12a; FR12b] for its re-
view in the algebraic framework. As a matter of fact, chain complexes allow to arrange
in a single object both gauge and ghost fields, as well as their antifields. Differential
graded *-algebras are likewise the appropriate objects to accomodate quantum observ-
ables which test gauge fields, ghost fields, and the corresponding antifields as well.

Examples of quantum field theories in the homotopy AQFT approach have been
built in [BBS19], where explicit models for Klein-Gordon theory and linear Yang-Mills
theory are presented. The aim of this thesis will be to follow this path and to build
another working example of a quantum field theory in the homotopical approach. Ex-
plicitly, we will consider the gauge theory of linearized gravity on a vacuum spacetime
with a vanishing cosmological constant, A = 0. That is the linearization of Einstein’s
equation.

General relativity plays a fundamental role in physics, providing the description
of gravitation. Its quantization is one of the hardest and most debated problems in
theoretical and mathematical physics. Many attempts to tackle this problem have been
made, but none has yet led to a unanimous solution. The linearization of Einstein’s
equation is usually seen in combination with the study of classical phenomena, such
as gravitational waves [Wal84]. Nevertheless, it was observed that low energy effects of
quantum gravity can be studied by means of the quantum field theory of linearized grav-
ity, which considers linear perturbations of the metric as a quantum field propagating
on a fixed background spacetime. This approach has found application in cosmology, in
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the study of fluctuations in the cosmic microwave background, see [Wei08], and mod-
els of quantum linearized gravity in a general covariant framework were developed in
the past years, see e.g. [FH13; BDM14]. Moreover, it was also observed that linearized
gravity may represent an important tool for extracting information about the local
geometry of the full, non-linear, phase space [BFR13]. Therefore, a thorough and deep
analysis of linearized gravity as a quantum field theory may be important also in further
developments in quantum gravity.

Our homotopical approach will allow us to deal consistently with all structures
deriving from the gauge symmetry of the theory. Linearized gravity has indeed the
structure of a gauge theory which is inherited from that of general relativity. In fact,
Einstein’s equation exhibits a gauge invariance under the action of the group of diffeo-
morphisms. This symmetry admits an important physical interpretation: It describes
the equivalence of all reference frames. As we have already observed, this feature trans-
lates to linearized gravity which, therefore, is invariant under the action of the group
of linearized diffeomorphisms. This symmetry plays a crucial role in linearized gravity
and it should not be neglected. The aim of the homotopical approach is precisely to
take into account all information encoded by gauge symmetry and this is accomplished
by reconsidering what the phase space of a gauge theory is. Explicitly, it is not simply
given by the set of all field configurations, but it also needs to contain all arrows given
by gauge transformations which link gauge fields. Technically, it is given the structure
of a groupoid, i.e. a category with all arrows invertible, see [BS19a] for a review.

In this work we follow a homotopical perspective which leads us to write a field com-
plex for linearized gravity. This encodes all information about gauge fields, ghost fields
and how the latter act on the former. Afterwards, dynamics, namely linearized Ein-
stein’s equation, is imposed through a critical locus construction. This is accomplished
by introducing an action functional and by demanding it to be stationary. Dynamics is
imposed only in a weak sense, i.e. up to homotopy, in compliance with the principles of
the homotopical approach and with the mathematical structure of the category of chain
complexes. The result of this procedure is the complex of solutions for linearized grav-
ity, see Equation (3.39). A complex of observables which tests the field configurations
is then introduced by duality.

The complex of observables comes naturally endowed with a shifted Poisson struc-
ture. The latter is proved to be trivial in homology thanks to the geometry of globally
hyperbolic Ricci-flat manifolds. This will allow us to introduce two classes of homotopies
which trivialize the unshifted Poisson structure. They play a role similar to that of re-
tarded/advanced Green operators for the gauge fixed problem. Similar results were also
proved to hold true for linear Yang-Mills theory in [BBS19]. Therefore, we will observe
that linearized gravity has a very similar behavior to linear Yang-Mills theory and it
admits a homotopical treatment analogous to the latter. Several difficulties arise in the
analysis of the chain complex of observables and of its homology due to the properties
of linearized gravity. As a matter of fact, linearized gravity is sensitive to both topology
and geometry of the background manifold unlike linear Yang-Mills theory which sees
only the former. In the study of these homologies a distinguished role is played by the
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Calabi complex [Khal6; Khal7] which allows us to prove some crucial results about
the homologies of the complex of solutions and observables on the subclass of constant
curvature background manifolds.

By means of retarded/advanced trivializations we introduce an unshifted Poisson
structure on the complex of observables. This is crucial for the canonical quantization of
linearized gravity. We review the axioms of AQFT, which implement causality and time
evolution and we consider their homotopical analogues, see [Yaul8; BSW19; BBS19].
These allow us to describe a quantum field theory consistently with all mathematical
structures of chain complexes. In order to do this we use techniques from model category
theory [Hov07; Hir09] and homotopical category theory [DHKS05]. At the end of this
work we build the AQFT functor for linearized gravity on the Ricci-flat spacetime
category Locgic, g : Locric — dg*Algc, which assigns the dg-algebra of quantum
observables to each background. We prove that 2y,¢ fulfills the homotopy AQFT axioms
and thus it can be interpreted as a quantum field theory.

We also consider the problem of uniqueness, up to weak equivalences, of our quanti-
zation prescription. We show that our construction identifies uniquely a quantum field
theory on each fixed Ricci-flat spacetime, however a similar result for the theory on the
entire category Locgjc is still open. This is due to properties of the category of globally
hyperbolic Ricci-flat spacetimes Locg;. as opposed to the slice categories Locg;./M,
which should instead be considered when the background spacetime M is fixed. In the
end, we will also highlight that this homotopical approach yields an AQFT that is not
weakly equivalent to other quantizations of linearized gravity that neglect part of the
information encoded in our chain complex of observables, see [FH13; BDM14].

An outline of the thesis is the following:

In Chapter 1, a quick overview of the main mathematical notions that are required
to develop our formalism will be presented. In particular, we will review the theory of
chain complexes, with regards to its model category structure. The main topics will be
chain complezxes, homology groups as well as weak equivalences and tensor products.

In Chapter 2, we will consider vacuum Einstein’s equation with vanishing cosmo-
logical constant. We will consider the differential equation satisfied by a first order
perturbation of the spacetime metric and we will highlight its gauge invariance prop-
erty. The de Donder gauge will be considered in order to write the equations of motion
in a Green hyperbolic form. Afterwards, the space of gauge equivalence classes of on-
shell fields will be built. Moreover, gauge invariant on-shell linear observables will also
be introduced by a duality argument. Finally, the space of observables will be endowed
with a Poisson structure built from the causal propagator for the gauge fixed problem.

In Chapter 3, a different approach to gauge theories will be presented: In order
to encompass all information about gauge symmetry, the phase space of the theory
will be endowed with the structure of a groupoid. Then, the linear action of gauge
transformations will allow us to translate the content of the groupoid for linearized
gravity into a chain complex. A critical locus construction will be used to implement
dynamics, yielding the complex of solutions of the equation of motion. This complex



and its homology groups are interpreted physically in terms of BV-BRST formalism:
They contain all gauge and ghost fields, and the corresponding antifields. Finally, the
complex of observables for linearized gravity will be introduced by duality. The complex
of observables will be studied in depth. In particular, we will observe that it carries nat-
urally a shifted Poisson structure, that can be unshifted by means of retarded/advanced
trivializations. Those play a role similar to that played by retarded/advanced Green
operators in ordinary field theories.

In Chapter 4, we will deal with the quantization of linearized gravity by enhanc-
ing the AQFT formalism to chain complexes. After a short overview of the algebraic
formalism, we will build the differential graded algebra of quantum observables for lin-
earized gravity via the canonical commutation relations (CCR). Afterwards, the notion
of homotopy AQFT will be introduced. The quantum field theory corresponding to our
choice of unshifted Poisson structure will be proved to satisfy the homotopy AQFT
axioms on the category of Ricci-flat spacetimes. Furthermore, we will prove that this
theory, when restricted to an arbitrary background spacetime, is determined uniquely
by our construction.
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1 Mathematical tools

1.1 On chain complexes

One of the most recurring structures which appears in the main part of this work is
that of chain complexes. We list here the basic notions and results about this topic
that are useful later. More in depth analyses and discussions about the theory of chain
complexes can be found in [Wei95; Hov07].

Definition 1.1.1 (Chain complex). Let K be a field of characteristic zero. A chain
compler is a family of K-vector spaces (V;,)nez together with a differential, i.e. a family
of linear maps (d,, : V;, = Vj,_1)nez such that d,,—; od,, = 0 for all n € Z. We will use
the following diagrammatic way to represent a chain complex:

dn dnt1

eV v, Vi (1.1)

Remark 1.1.2. In order to make notation simpler, we shall denote all data defining a
chain complex collectively by V and write d : V;, — V,,_1 for every component of the
differential, without explicit reference to the degrees unless ambiguities may arise. V

The notion of maps between chain complexes that preserve the chain complex struc-
ture is the following one.

Definition 1.1.3 (Chain map). Let V and W be two chain complexes with differentials
d",d", respectively. A chain map f : V — W is a family of linear maps (fn: Vo —
Wp)nez such that dV f, = fo_1dY for all n € Z. In other words, the maps are such
that the squares in the diagram

av ay
eV "V Vo
fn—1l fnl fn+1l (1'2)
"'%Wn—l o Wn - Wn—‘rl%"'
dn dn+1

are all commutative.

Definition 1.1.4. Let K be a field of characteristic zero. The category of chain com-
plexes Chy is the category whose objects are chain complexes over KK and morphisms
are chain maps between them.
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To each chain complex V' € Chg one assigns a graded vector space Hq(V') which is
its homology.

Definition 1.1.5 (Homology). Let V' € Chg be any chain complex. Its homology is
the graded vector space He(V) = (Hp(V'))nez , where

_ Ker(d:V, =V, 1)

V) = v o) (13)
Remark 1.1.6. We will often use the following nomenclature:
e an n-cycle is any element in the kernel of differential d,,;
e an n-boundary is any element in the image of differential d,, 4.
We also introduce the notation: Z,, = Kerd,, and B,, := Imd,4;. \Y,

Remark 1.1.7. Observe that a chain map f : V — W induces a linear map H,o(f)
between homologies,

Hu(f) : Ho(V) — Ho (W), [v] — Ha(f)[0] = [fn(v)], (1.4)

where an arbitrary representative v in the homology equivalence class is chosen. The
compatibility property of chain maps, dV f,, = f,_1d", guarantees that f, sends ele-
ments of Z, (V) to elements of Z,(W) and elements of B, (V) to elements of B, (W).
This is tantamount to saying that H,(f) is a well-defined map. Moreover, the associa-
tion to a chain complex of its homology is functorial,

H, : ChK — ChK,
V —s Hy(V) (1.5)
(f: V= W)= (Ho(f) : Ho(V) = Ho(W)),

where the homologies are seen as chain complexes with trivial differentials. v

We now want to compare chain maps. To this aim the notion of chain homotopy is
introduced.

Definition 1.1.8 (Chain homotopy). Let V,TW € Chgk be two chain complexes and
let f,p € Chg(V,W) be chain maps. A chain homotopy between f and p is a family
(hpn, : Viu = Wig1)nez of linear maps such that d hy, + hp1dV = f, — pp, for all
n € Z. Two chain maps f,p: V — W are said to be chain homotopic if there exists a
chain homotopy h between them.

Remark 1.1.9. Observe that chain homotopic maps induce the same map at the
homology level. Indeed, let f,p : V. — W be chain maps with h a chain homotopy
between them. Then, for all [v] € H,(V), it holds

Hy(dV h+ hd")[w] = [dY (hpv) + hyy d¥ 0] = [0], (1.6)
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since v is an element of Z,(V) and d" (h,v) is an element of B,,_1(W). It follows that
Ho(f) = Ho(p) = Ho(f = p) = Ho(d" h+ hd") =0, (17)
hence, the maps Ho(f) = He(p) coincide. v

The definition of chain homotopy can be rephrased in a more convenient way. Let
us start by defining the mapping complex between two chain complexes.

Definition 1.1.10. Let VW € Chk be two chain complexes. The mapping complex
hom (V, W) € Chg between them is

hom (V,W),, == [] Lin(Vin, Waym) , (1.8)
meZ

for all n € Z, where Lin denotes the vector space of linear maps between vector spaces.
The differential of the hom (V, W) complex is denoted by d and it is defined as

9 : hom (V, W), — hom (V, W), ,

L+—— 0L = (dW Ly — (=1)"Ly_4 dV) (1.9)

meZ

for all L = (Ly)mez € hom (V,W), , n € Z.

Observe that a chain map f : V — W is exactly a O-cycle in hom (V, W), i.e. an
element f € hom (V, W), which satisfies df = 0. A chain homotopy h between chain
maps f and p is a l-chain, i.e. an element in hom (V, W), , such that 0h = f — p.
This clarifies that two chain maps f,p € hom (V, W), are chain homotopic if and only
if they belong to the same homology class, namely [f] = [p] € Ho(hom (V,W)). One
can extend this picture to higher homotopies too. If h,h’ are two chain homotopies
between chain maps f and p, then h — A’ € hom (V, W), is a 1-cycle in hom (V, W),
i.e. 9(h —h') = 0. Furthermore, given two 1-chains h, ' € hom (V, W), , a higher chain
homotopy between them is a 2-chain p € hom (V, W), such that dp = h — h/. Again,
such a higher homotopy exists if and only if [h] = [h'] € Hi(hom (V,W)). The same
pattern holds for even higher chain homotopies.

In the category of chain complexes Chk isomorphisms are those chain maps that are
linear isomorphisms in each degree. In many situations being isomorphic is a too strong
condition for chain complexes and it is to be more useful to regard as “the same” those
chain complexes that have isomorphic homologies. This leads to the following definition.

Definition 1.1.11 (Quasi-isomorphism). Let V., W be two chain complexes. A chain
map f:V — W is a quasi-isomorphism if the induced map He(f) : He(V) — Ho(W)
is an isomorphism between the homologies.

Lemma 1.1.12. Let V € Chg. Then, H,(V) = 0 for all n € Z if and only if 0 = V
18 a quasi-ismorphism.
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Proof. Since 0 is the chain complex with trivial degrees and differential, its homologies
are all trivial. Let V be a chain complex such that 0 = V is a quasi-isomorphism,
then Definition 1.1.11 implies immediately that all the homologies H, (V') are trivial.
Vice versa, let V' € Chg be a chain complex whose homologies are all trivial. The zero
map 0 : 0 — V clearly induces zero maps on the homologies. These are isomorphisms
between homologies, which are all trivial. Thence, 0 : 0 — V is a quasi-isomorphism. [

The idea of considering quasi-isomorphic chain complexes as being the same can be
formalized further. In fact, it is possible to endow chain complex category Chg with a
model structure whose weak equivalences are the quasi-isomorphisms.

Definition 1.1.13. Let Chg be the category of chain complexes. Then, we define the
following classes of morphisms:

e weak equivalences are quasi-isomorphisms;
e fibrations are chain maps which are surjective on each degree;

e cofibrations are chain maps which fulfill the left lifting property with respect to
acyclic fibrations.

Remark 1.1.14. The choices in Definition 1.1.13 endow the category Chk with the
structure of a model category. The proof of this statement is carried out in [Hov07].
Herein, it is shown that it can be obtained as a cofibrantly generated model category,
weak equivalences being given by quasi-isomorphisms, generating cofibrations by mor-
phisms S"~! — D" and generating trivial cofibrations by morphisms 0 — D™. The
objects S™ and D" are defined below. v

Definition 1.1.15. Let V' be a K-vector space, define S™(V) € Chg by S"(V), =V
and S™(V) :== 0 for all k # n, k € Z. Similarly, define D™(V') € Chg by D™"(V) .=V if
k=nor k=n—1, and 0 otherwise. The only non-vanishing differential, d,,, in D"(V')
is the identity.

Remark 1.1.16. In chain complexes both products and coproducts are constructed
degreewise. Let V, W € Chg, then their product object is

VI[W = (Vo x Wa)nez = V x W, (1.10)
and their coproduct is
VI[W=(Vae Wz =VeWw. (1.11)

In both cases differentials are given by acting with the appropriate differential on each
component, namely dV>W : Vi, x W,, = V1 x W1, dVW(v,w) = (dV v,dV w),
and VWV, e W, = Vi oWy, d"Ywow) =dVve dV w.

Not only products and coproducts are obtained from a degreewise construction, but
the same is also true for each limit and colimit. Since the category Veck of K-vector
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1.1. On chain complexes

spaces has all (small) limits and colimits, then also the category Chy is both complete
and cocomplete. Thus, Chg is a model category when equipped with the model structure
from Definition 1.1.13. v

Remark 1.1.17. Observe that the zero chain complex, i.e. the one which has 0 as each
component, is both initial and terminal in Chg. Moreover, any object in Chg is both
fibrant and cofibrant. The fact that every object is fibrant is immediate since fibrations
are degreewise surjections, see Definition 1.1.13. In order to check that each object is
also cofibrant, it can be useful to observe that every V' € Chk can be decomposed as a
suitable coproduct of S™(K) and D™(K). Then, it is possible to show that both S™ and
D™ are cofibrant in the model category Chg. One can conclude since cofibrations are
preserved by coproducts. v

The category Chg carries also a symmetric monoidal structure.

Definition 1.1.18. The tensor product V@ W € Chgk of two chain complexes V., W &
Chg is defined as the chain complex with components

(VW) =P Vin @ W, (1.12)
MEZL

for all n € Z, together with the differential given by the graded Leibniz rule
dvow)=dveow+ (-1)"v®dw, (1.13)

for all v € V,, and w € W,,_,,,. In the right-hand side of Equation (1.12) the symbol ®
denotes the usual tensor product of vector spaces.

The tensor product of chain complexes is symmetric via the chain isomorphism
VVOWSWeV, vew—yvew):=(—1)mkyguv, (1.14)

for all v € V,,, and w € Wj. The chain isomorphism + is referred to as the symmetric
braiding in the category Chg. The model category of chain complexes endowed with
the tensor product, symmetric braiding and mapping complex from Definition 1.1.10
is a closed symmetric monoidal model category, see e.g. [Hov07].

Lemma 1.1.19. Let Chg be the closed symmetric monoidal model category of chain
complexes. Then the mapping complex functor hom : Chg® x Chg — Chg preserves
weak equivalences in both the entries.

Proof. Since Chg is a closed monoidal model category the monoidal structure ® :
Chg x Chg — Chg is a Quillen bifunctor. For each V € Chg, V ® — : Chg — Chk is a
left Quillen functor with right adjoint hom (V, —). This follows from the fact that V' is
cofibrant, see [Hov07, Remark 4.2.3]. From the definition of right Quillen functors and
Ken Brown’s lemma it follows that hom (V, —) preserves weak equivalences between
fibrant objects. Since all objects in Chgk are fibrant, the functor hom (V, —) preserves
all weak equivalences. The dual argument implies that weak equivalences are preserved
also in the first entry. d
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To conclude the section, we fix our sign conventions for shiftings of chain complexes.

Definition 1.1.20. Let V € Chg be any chain complex and let p € Z. We define the
p-shift of V as the chain complex V[p] € Chg with components V[p], = V), for all

n € Z, and differential 4yl .— (=1)P d}{_p.

Remark 1.1.21. From Definition 1.1.20 it follows immediately that V[p|[q] = V[p+ ¢]
and V]0] =V for all V € Chk and for all p,q € Z. v



2 Linearized gravity

In this chapter we study the linearization of Einstein’s field equation from a classical
point of view. We shall focus mainly on the gauge invariance of the theory and we shall
exploit it to construct a suitable algebra of observables for the solutions of the field
equations.

In this chapter we follow very closely the analysis in [BDM14] and we present here
the main results for the sake of completeness.

2.1 The linearized equation

The starting point of our study is of course Einstein’s field equation since the object
of our attention will be its linearized version. Because of the centrality of this topic in
the development of our work we shall spend some time outlining its main features.

Let us start with the setting of our construction and explain what we mean by
spacetime.

Definition 2.1.1 (Spacetime). A spacetime is a quadruple (M, g,o0,t), where (M, g)
is a four dimensional Lorentzian manifold, o is a choice of orientation on M and t is a
choice of time-orientation.

In the following, in place of the whole quadruple, we shall refer to a spacetime simply
with M, or (M, g) if it will be necessary to make the metric explicit. Moreover, as far as
the Lorentzian metric g is concerned, we adopt the signature convention (—,+,+,+).
It is worth explaining this definition: It is a well established fact in General Relativity
that a spacetime is described by a smooth manifold, and in particular by a Lorentzian
one. The Lorentzian metric g equips the manifold with a causal structure. Let x € M
be a generic point on the manifold, then we can consider the tangent space T, M. The
metric g allows us to label each tangent vector v € T,M according to the value of
g(v,v). In particular, we say that the tangent vector v is timelike if g(v,v) < 0, lightlike
if g(v,v) = 0 and spacelike if g(v,v) > 0.

For every point x € M, one can construct a two-folded light cone on T, M, stemming
from the zero vector 0 € T, M, by collecting those tangent vectors that are timelike or
lightlike. We have the freedom to identify one of the folds as the collection of future-
directed vectors. The existence of a global smooth vector field t which is timelike at
each point allows us to make this choice consistently in a smooth way on M. In other
words, we can distinguish in a coherent way “future” and “past”.
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In order to introduce a causal structure for a Lorentzian manifold we need first to
consider the next definition.

Definition 2.1.2. Let (M, g) be a spacetime. A (piecewise) smooth curve is a (piece-
wise) smooth function v : [0,1] — M. We say that ~ is timelike (respectively lightlike,
spacelike) if such is the vector tangent to the curve at each point. Moreover, we say
that it is causal if the tangent vector is nowhere spacelike and it is future (past) directed
if each tangent vector to the curve is future (past) directed.

Exploiting these structures, we can define on a Lorentzian manifold M the notion
of chronological (causal) future and past of a point x € M.

Definition 2.1.3. Let (M,g) be a spacetime and € M an arbitrary point. We
introduce the chronological future/past of x as the set Iy(x) of all points y € M such
that there exists a future/past-directed timelike curve 7 : [0, 1] — M for which v(0) = =
and (1) = y. In the same way, we can introduce the causal future/past, denoted by
J+(x), by considering causal curves instead of timelike ones. Moreover, for any subset
O C M, its chronological past/future is defined as I+ (O) = (J,co I+ (x). Similarly we
define J4(O). Finally, we denote the union of the causal future J4 (O) and of the causal
past J_(O) of O with J(O).

This causal structure is not strong enough to guarantee the absence of pathological
situations. As a matter of fact, there are Lorentzian manifolds, such as Anti de Sitter
spacetime (AdS), see [HE97], which admits closed timelike or causal curves, which one
wants to avoid when concerned with the notion of causality. In order to avoid these
problems, it is customary to restrict the attention to a particular class of spacetimes,
that are the so-called globally hyperbolic spacetimes. We start with introducing two
auxiliary notions.

Definition 2.1.4. Let M be a spacetime and X C M be a subset. Then,
i. X is called achronal if each timelike curve in M intersects X at most once;

ii. We call future/past domain of dependece Dy (X) the set of points ¢ € M such

that every past/future inextensible causal curve passing through ¢ intersects 3.
We denote with D(X) := D4 (X) U D_(X) the domain of dependence.

We give now the definition of globally hyperbolic spacetimes:

Definition 2.1.5 (Globally hyperbolic). A spacetime M is globally hyperbolic if there
exists a Cauchy surface ¥ C M, that is a codimension 1 hypersurface which is an
achronal set such that D(X) = M.

It is possible to show that global hyperbolicity implies that the spacetime M admits
a foliation where each leaf is diffeomorphic to the Cauchy surface 3 and it is labelled by
what can be interpreted as a time coordinate, see [BS05; BGP08] for further details. It
is clear that this condition is crucial to give an idea of “initial” conditions and, indeed,
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2.1. The linearized equation

it constitutes a sufficient condition for a well-posed Cauchy problem in a lot of concrete
situations [BGP08]. The existence and uniqueness of the solutions for a Cauchy problem
is typically a desired feature, both from a mathematical and from a physical point of
view. We give now a useful definition:

Definition 2.1.6. Let M be a globally hyperbolic spacetime and F' — M be a finite-
rank real vector bundle. We call

i. T'o(F) the space of smooth and compactly supported sections of the vector bundle
F;

ii. T'so(F) the space of smooth and spacelike compact sections of the vector bundle
F, that is f € T'so(F) if there exists a compact subset K C M such that supp f C
J(K);

iii. T'pe/c(F) the space of smooth and past/future compact sections of the vector
bundle F', that is f € T'jc/fc(F') if supp f N Jx () is compact for all z € M;

iv. Tye(F) == Tpe(F) NIt (F) the space of smooth and timelike compact sections of
the vector bundle F'.

Furthermore, it will be useful to consider the restrictions of linear differential oper-
ators to sections with causally restricted supports, as per Definition 2.1.6. Therefore,
we introduce the following compact notation:

Definition 2.1.7. Let M be a globally hyperbolic manifold and P : T'(F) — T'(F’) be
a linear differential operator between finite-rank vector bundles F' — M and F’ — M.
We denote by Ker(_y P the kernel of the restriction of P to sections with causally
restricted supports, P : T'_y(F) — ['(F'), where (—) = ¢, sc,pc, fc,te. Similarly we
denote by Im(_y P the image of the restriction of P to sections with causally restricted
supports.

We are now ready to write the Einstein’s field equation:

Ric(g) ~ 5oR(g) =T, (2.1)

where Ric(g) is the Ricci tensor associated with the Levi-Civita connection V for the
metric g, R(g) is the scalar curvature and T € T'(®% T*M) is the symmetric stress-
energy tensor.

Remark 2.1.8. Here we are assuming a vanishing cosmological constant A = 0, fol-
lowing the perspective in [BDM14]. This choice remarkably simplifies the equations we
are dealing with, and we expect that this choice does not play a distinguished role in
our reasonings. v
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Let us simplify our setting and let us assume that we are in a vacuum spacetime.
This corresponds to T' = 0. Therefore, Einstein’s equation takes the following form in
an arbitrary local chart

1
Rab - §gabQCdRcd =0. (22)
It follows immediately that
1
0=g"Rey — §gabgabngRcd = —9" Ry, (2.3)

that is R (g) = 0. This is tantamount to saying that a Lorentzian metric g that fulfills
the vacuum Einstein’s equations also fulfills

Ric(g) =0. (2.4)

It follows that, for our purposes, Einstein’s equation is exactly given by Equation (2.4).
Therefore, we can give the following definition.

Definition 2.1.9 (Physical spacetime). A physical spacetime M is a globally hyperbolic
spacetime fulfilling equation (2.4).

An important feature of Einstein’s equation is its invariance under the action of
diffeomorphisms: If M and N are smooth manifolds, f : M — N is a diffeomorphism
and g is a Lorentzian metric on N which solves Einstein’s equation, then the pullback
f*g is a Lorentzian metric on M which still fulfills Einstein’s equation. In other words,
given a physical spacetime (N, g), the pullback along any choice of diffeomorphism
f: M — N yields a spacetime (M, f*g) which is again a physical spacetime, isometric to
the former. This is a direct consequence of the geometric nature of the Ricci tensor, that
is Ric(f*g) = f*Ric(g). From a physical point of view the diffeomorphism invariance
of Einstein’s equation translates the freedom of choice of the reference frame, which
plays a key role in General Relativity. In a slightly more abstract language we can
say that Einstein’s equation exhibits the structure of a gauge theory where the gauge
freedom coincides exactly with the possibility of acting on solutions with arbitrary
diffeomorphisms. Therefore, gravity is a gauge theory whose gauge group is the group
of diffeomorphisms on spacetimes.

In this work we are not going to study the full Einstein’s equation but only its linear
counterpart. Thus we need to find a linearization of Equation (2.4) in the following
sense. Given a physical spacetime (M, g), we consider a small perturbation of the
background metric g, namely a one-parameter family of metrics gy := g + A\h, A €
(—e, ), where € > 0 is an expansion parameter and h € F(@% T*M). We are interested
in the equations fulfilled by h at order O(\?).

We start from Ric(gy) = 0 and we compute choosing a local chart. Exploiting the
definition of Ricci tensor and the actual form of the Levi-Civita connection we find

Rap(g)) = VoT§,(9x) — VT (ga) =0, (2.5)

10



2.1. The linearized equation

where with V) we denote Levi-Civita connection for gy and I'¢, (gx) are the correspond-
ing Christoffel symbols. To expand these equations in powers of A we need to go step
by step expanding each object in our geometric quantities. We obtain the following
identities:

g =g = A+ OV, (2.62)
A
Tép(92) = Top(9) + 59° (Vahay + Vohaa = Vahay) + O(X), (2.6b)

where we adopted the convention that all indices are raised with respect to the back-
ground metric g (e.g. h® = g*¢g*®h.q) and we recall that V, is the Levi-Civita con-
nection for g. By recollecting all these identities, a long but straightforward calculation
leads to

Ray(9)) = Rav(g)
A
D) {Dh“b + £(%Vtrh—divh)ﬂgab — R hep — R%heq + 2Rcbdahdc} +0(N?),
(2.7)

where Lxg is the Lie derivative of the metric g along the vector field X, -# is the
musical isomorphism from ®"T*M to @"TM, trh = ¢*hy, is the trace of h and
(div h)q = g®V.hy, is its divergence. It is worth noting that all geometric quantities
are computed with respect to the background metric. Thus, the linearized Einstein’s
equation is obtained restricting our attention to the term at first order in A in the latter
equation. Here we use the hypothesis that the background is Ricci flat to obtain

1
D) {Dh“b LY tr hdiv hysab + 2Rcbdahdc} =0. (2.8)

We can rewrite Equation (2.8) in a simpler way. We start giving the definitions of some
relevant operators.

Definition 2.1.10. Let (M, g) be a physical spacetime. We call
i. trace tr: T(Q%T*M) — C®° (M) : h = trh = g%®hgy,;

ii. trace reversal I:T(R%T*M) — I'(Q%T*M) : h — Ih, such that

1
(Ih)ab = h(zb - igab trh 5

iii. Killing operator Vg : I'(Q4T*M) — T(®%T T*M) : H — VgH, such that
(VSH)ZQllln = v(onzlzn) ’
where we take the normalized symmetrization over the indices in brackets;

11



2. LINEARIZED GRAVITY

iv. divergence div : T'(QET T*M) — T'(RET*M) : H — div H, such that
(div H)iyipy = 9"V aHpiy iy 5
v. Riemann operator Riem : T'(®% T*M) — T'(®%T*M) : h + Riem h, such that
(Riem h)gp == R, % heq -

Similar definitions are also given for operators acting on sections of the tangent bundle
and of its tensor powers. With a slight abuse of notation we denote both with the same
symbols.

Using these operators and recalling the identity Lxga = VoXp + VpXg, VX €
I['(TM), going through some manipulations we eventually manage to rewrite Equa-
tion (2.8) in the following compact and coordinate-independent form

(-0 + 2Riem +2IVgdiv) [h =0. (2.9)
Therefore it will be useful to define the differential operator
P:T(R4T*M) — I'(QRLT*M)

| | (2.10)
h+—— Ph = (-0 + 2Riem +2IVgdiv) Ih,

in order to simplify the notation.

We eventually come to a precise formulation of our problem: We want to study
linearized gravity on a physical spacetime (M, g) as a theory for a dynamical field
h € T(®%T*M) that is a smooth symmetric tensor field of type (0,2), fulfilling the
linearized Einstein’s equation (2.9), Ph = 0.

The first thing we need to analyze is well-posedness of the problem: We want to
investigate if the solution of a Cauchy problem whose initial data are imposed on a
Cauchy surface of M exists and is unique. A first indication that this is not the case
comes from the principal symbol of the operator P, or rather of P o I. Let us observe
that it is entirely equivalent to study one operator or the other since the following result
holds.

Proposition 2.1.11. The trace reversal I is an involution and consequently an iso-
morphism.

Proof. The claim follows from a direct calculation. Let h € T'(®% T*M) be an arbitrary
smooth section, then

1
trIh = g®(Ih)g = g™ <hab — 3 9abtr h) =trh—2trh=—trh. (2.11)

Incidentally this reveals where the name trace reversal comes from. To show that [ is
an involution it is now sufficient to compute

1 1 1
(IoIh)ep = (Ih)ap — o Jab tr Ih = hgp — 5Jab trh + 2 Jab T h = hg. (2.12)
It follows immediately that I is an isomorphism since we have explicitly found its (left
and right) inverse, which is [ itself. O

12



2.1. The linearized equation

We recall now the definition of principal symbol of a differential operator.

Definition 2.1.12 (Principal symbol). Let £ and F' be finite rank vector bundles over
a smooth manifold M, and suppose D : I'(E) — I'(F) is a differential operator of order
k whose expression in local coordinates is

D= Do‘(x)@ (2.13)

ox®
lal<k

where, for each multi-index o and x € M, D*(z) : E — F is a vector bundle map.
The principal symbol of D is the vector map op : T*M — Hom (E, F') defined, in local
coordinates, as follows:

op(§) =Y Dx)éa, (2.14)

la|=k
forallz € M and £ € T; M.

The calculation of opo; : T*M ® ®% T*M — ®§ T*M proceeds in the following
way: First we work a bit on the explicit form of the differential operator

(PolIh)g = —D0hgy +2(IVsdivh)ep + 2R, hea
0-ord

= —-VVcha + I(Vavchcb + vach‘cll) T+
= —VVehap + VaVhey + ViVohea — gy VIV heg + - - .

Afterwards we can simplify the expression choosing normal coordinates:

(P olIh)gy = —0%chay + 0a0hey, + 0y0hea — gapd 0 heg + - - -
= (—050007 05 + 680,0° + 520,0° — gap0 0 ) hea + -+ - .

It follows that

opor(§)ay™ = ~0i0567Er + 064" + 036E° — gup€ E”
= —gep€eelidy ™ + (0t + 06 — gut™E) . (215)

where id here stands for the identity operator on I'(®% T*M). According to ordinary
results on differential equations on Lorentzian manifolds [BGP08; Bael4] we know
that a sufficient condition for the existence and uniqueness of solutions for an initial
value problem on a globally hyperbolic Lorentzian manifold, together with existence
and uniqueness of the Green operators, is that the problem is written in terms of a
normally hyperbolic differential operator. This is an operator whose principal symbol
is given by —g(&,£)id. From the calculations above it is clear that the operator P o I
is not normally hyperbolic and thus some problems concerning well-posedness of the
initial value problem may arise. The solutions of Equation (2.9) cannot be constructed

13



2. LINEARIZED GRAVITY

in terms of a Cauchy problem with arbitrary initial data. Let us observe that the term
which breaks normal hyperbolicity is the one in brackets in the final expression of the
principal symbol. Tracing back its origin we find out that this is due to the IVgdiv
term.

We now want to convince you that this issue will not get us into big troubles. Indeed,
while we were outlining the principal features of Einstein’s equation we highlighted
diffeomorphism invariance, which endows General Relativity with the structure of a
gauge theory. This is transferred to the level of the linearized theory, which is therefore
a gauge theory. To understand how this occurs, let us look at the linearized action of a
diffeomorphism. Let f) : M — M be a 1-parameter group of diffeomorphisms generated
by a field X and let us compute

d
* — )\7 * )\2
g=9+ g 7Ong+O( )

— g alim ST o)
7—0 T

=g+ Mxg+O\2) =g+ 2\VsX’ + O(\?), (2.16)
where we have made explicit use of the musical isomorphism - : @ TM — Q" T*M.
Because of invariance under diffeomorphisms, both g and f{g ought to be regarded
as being the same at the level of General Relativity. It follows that, as far as the
linearized theory is concerned, the gauge freedom is such that two dynamical fields
h,h' € T(R%T*M) are to be considered equivalent if they differ by the action of
a linearized diffeomorphism. This means if there exists x € I'(T*M) such that b’ =
h+V gx. This means that for each solution & of the linearized Einstein’s equation (2.9),
also h+ Vgx is a solution for arbitrary x € I'(T*M). This claim can be proved directly

showing that VsI'(T*M) C Ker P. In order to do this, it is useful to prove the following
lemma, which states some identities that will also be very useful in the rest of the work.

Lemma 2.1.13. Let M be a physical spacetime. Then the following identities hold true:
i. tr(0 — 2Riem) = Otr on ['(®% T*M);
#i. (O —2Riem)I = I(0 — 2 Riem) on T'(Q% T*M);
itt. (O —2Riem)Vg = Vg on I'(T*M);
. 2divIVeg =0 on I'(T*M).

Proof. The proof is only a matter of direct calculations. Let us start with the first
identity, and let h € I'(®% T*M) be an arbitrary section. In a local chart we have

tr (O — 2 Riem)h = ¢%(Ohay — 2R, “Yheq) = Otrh + 2Rheg = Otrh,  (2.17)

where in the last step we used that g is Ricci-flat. The first claim follows. The second
one can be proved along the same lines, using also the identity just shown. For this

14



2.2. Gauge fixed dynamics and Green operators

reason we do not dwell into the details. It is interesting to carry out the proof of the

third identity since it uses some structural properties of the covariant derivative. Let
x € I(T*M):

(0= 2Riem) VX)), = O(Vsx)ab — 2R, (VX) e
1 1
= <2VCVcVaXb - RaCdech> + <2VCVchXa - RdeaVch)
(2.18)

Since the second term can be obtained from the first one simply replacing a with b and
vice versa, it is sufficient to consider only one of them. Let us compute the following;:

1 1
SVVeVaxs = 5V (VaVeors = RlyeaXa)
1
= 5 (vaDXb - Rdccavde - Rdbcachd - (chdbca)Xd - Rdbcavcxd>
1
= 5 (vaDXb + 2Ra0dech) ) (219)

where in the last step we used that ¢ is Ricci-flat, the symmetries of the Riemann tensor
and the second Bianchi identity, which implies VcRdbm = 0. Inserting the last identity
in the previous one, we find the statement of the lemma. We conclude by saying that
the proof of the fourth identity does not present novelties, hence it is omitted. ]

We are now ready to prove the following proposition.

Proposition 2.1.14. Let M be a physical spacetime. Then Vgxy € Ker P, Vy €
L(T*M).

Proof. Using the identities in Lemma 2.1.13, we can calculate

(=04 2Riem +2IVgdiv) IVgx = —I (O — 2Riem) Vgx + IVsOyx
= IVsOx + IVsOyx =0. (2.20)

The statement of the theorem is thus proved. O

Therefore linearized gravity is a gauge theory explaining the lack of hyperbolicity of
its dynamical operator P. Keeping in mind what happens in other linear gauge theories,
such as electromagnetism, we can hope to turn Equation (2.9) into an hyperbolic one
by exploiting the underlying gauge invariance. This is indeed the case and it will be
widely explored in the following section.

2.2 Gauge fixed dynamics and Green operators

Let us briefly recall the precise formulation of our problem.
The space of fields is F(@% T* M), the vector space of symmetric covariant 2-tensors
on a physical spacetime M. The differential operator P : T'(®% T*M) — T'(R% T*M),
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2. LINEARIZED GRAVITY

defined as P := (-0 + 2 Riem +2IVgdiv) I, acts on this space. We study the problem
given by the equation
Ph=0, heT(RLT*M). (2.21)

We have already shown that this equation admits a gauge symmetry encoded by the
following equivalence relation on the space of dynamical variables:

h~h eD(QLTM) <L Iy eD(T*M): 1 —h=Vsy. (2.22)
According to this definition we can construct the off-shell configuration space Cog (M)
of gauge equivalence classes of fields:

Cot (M) :=T(RET*M)/ ~ . (2.23)

Remark 2.2.1. Thanks to Proposition 2.1.14 it follows that the operator P descends
naturally to an operator on Cog (M), which, with a slight abuse of notation, we still
denote by P. v

Going on with this line of reasoning, we introduce the on-shell configuration space
Con (M) as the space of gauge equivalence classes which solve Equation(2.21). Explicitly,

Con (M) :={h e T(R%T*M) | Ph=0}/{Vsx | x € T(T*M)}. (2.24)

As we said at the end of the previous section, we can try to turn our problem into
an hyperbolic one exploiting a suitable gauge fixing condition. For linearized gravity a
very common choice is the so-called de Donder gauge, which plays the same role of the
Lorenz gauge in electromagnetism. This consists in the condition div /h = 0. We read
directly from the expression for P that this condition reduces the operator to a nicer
one, which is hyperbolic (modulo trace reversal). The first thing we have to check is
the implementability of this gauge fixing condition, that is, if for each on-shell variable
h there exists a gauge equivalent counterpart, which also fulfill the de Donder gauge.
This is precisely the content of the following proposition.

Proposition 2.2.2. For each gauge equivalence class [h] € Copn (M) there exists a
representative h' € [h] which solves the problem

Pl = (-0+2Riem)Ih =0, (2.25a)
divIk =0. (2.25b)

Proof. Let [h] € Con (M) and h be any representative. Suppose that h does not fulfill
the gauge fixing condition (2.25b), since, otherwise, there would be nothing to show.
Then we look for another representative h’/, which instead satisfies div Ih’ = 0. Since
every h' € [h] is of the form h' = h + Vgy, for some x € I'(T*M), we have to find a
1-form solving

1
O:divlh—l—divlvsx:divlh+§Dx, (2.26)
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where we used the last identity in Lemma 2.1.13. Such a x always exists since div Ih
represents a smooth source for the normally hyperbolic operator O, see [BGP08]. Then
B = h+ Vg is in the equivalence class [h] and it satisfies the de Donder condition.
Moreover, also Equation (2.25a) is verified since A’ fulfills both Equation (2.21) and
(2.25b). O

Remark 2.2.3. Observe that the de Donder condition does not fix the full gauge
freedom. In fact, there remains the possibility of performing another gauge transfor-
mation compatible with the de Donder gauge. In order to show this, and explicitly
understand what the residual gauge is, let h, i’ be two gauge equivalent configurations
both satisfying the de Donder gauge. We can write h’ — h = Vgx and it holds that
0=divI(h —h)=divIVgx = %Dx. Therefore the de Donder gauge actually selects
an entire family of field configurations which differ only by a gauge transformation
Vsx, where x € I'(T*M) is such that Oy = 0. v

We can now make use of the Proposition 2.2.2 to go further in the study of our
problem. Every gauge equivalence class of solutions of Equation (2.21) is indeed char-
acterized by means of a solution of the gauge-fixed problem, cf. Equation (2.25). The
possibility of studying the latter instead of the former represents a great opportunity
since the operator @) := —[J + 2 Riem, which appears in Equation (2.25a), is normally
hyperbolic. It is known, see for example [BGP08; Bael4] for the details, that every nor-
mally hyperbolic operator on a globally hyperbolic Lorentzian manifold admits unique
retarded and advanced Green operators: G : Tie(Q@LT*M) — T'(®%T*M) such that
Vp € T4e(®R% T*M):

i. QGip=p;
ii. GLQp = p;
iii. supp (@:(/ﬁ) C J+ (supp (p))-

We recall that Ftc(@% T*M) is the space of timelike compact sections of ®% T*M, see
Definition 2.1.6, and J4(K) denotes the causal future/past of one subset K C M, as per
Definition 2.1.7. Moreover, we can define the so-called causal propagator G .= G —G_,
which allows us to construct the following exact sequence [BGPO08; Khal4]:

0 — Tee(@2T*M) % Ty (@ T M) % D(@2 T M) —2 T(QRLT*M) — 0.
(2.27)
Let us introduce the standard pairing between sections of &' T M:

(- =) LERTMRN@YT'M) — R, (H.0)= [ (HOny, (229

M
where (—, —) is the dual pairing between @ T*M and Q'S TM, x denotes the subset
of the Cartesian product whose pairs have compact overlapping supports and p, is

the volume form. Once this pairing has been given we can introduce the notion of
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2. LINEARIZED GRAVITY

formal adjoint of a differential operator T' : I'(®¢T*M) — I'(®E T*M). This is a
T : T(RFT*M) — I'(QGT*M), which reads, if existent, (T'H,0) = (H,T*0O) for
each pair (H,0) € I'(Q¢T*M)xT'(Q'T T*M). It is possible to show that I, [J and Riem
are formally self-adjoint, namely they coincide with their formal adjoints. This implies
that @ is also formally self-adjoint and the same holds true for P/ = (=0 + 2 Riem)],
thanks to Lemma 2.1.13. Finally let us check that Vg and — div are one the adjoint of
the other.

Lemma 2.2.4. For each pair (h,x) € T'(®% T*M)xT(T*M) it holds
Proof. Let (h,x) be a pair as in the statement, then

1

a a 1 a a
(0950 =5 [ B (934 V) sty = =5 [ {(Fhan” (T han? }
M M

. / (Ve hap)x’pag = (—divh,x), (2.30)
M

where in the second step we used the compactness of the support and in the third one
the symmetry of h. O

Since the pairing (2.28) is non degenerate, it turns out to be a powerful tool, as the
following calculations reveal. Let hy € Ftc(@% T*M) and hg € FC((X% T*M). It follows

(IG+hy, hy) = (IG+hy,Qhy) = (h1, G=IQh,) = (h1, G=QIhb) = (hy, Ih)
= (Ih1, G=QRb) = (G+Ihy, hy), (2.31)

where we wrote hy = Qhl, thanks to the surjectivity of @, and where we used that
(% = G=. The arbitrariness of the sections implies that IG+ = G+I on [y(®@%T*M).

We can now use these results to construct Green operators for P’, which is the
operator we are most interested in since it appears in Equation (2.21). Even though P’
is not normally hyperbolic, as a quick computation of its principal symbol can show,
the operators G4 = C:*i ol =1o éi satisfy the definition for retarded/advanced
Green operators for P’. They share the same support properties of éi and they verify
GioP'p=P oGyip=p,forall p€ Tyw(RET*M). Since P’ is formally self-adjoint,
as already observed, the existence of such Green operators is tantamount to saying
that P’ is Green hyperbolic and therefore its retarded/advanced Green operators are
also unique. For the definition of Green hyperbolic operators and their properties see
[Bael4]. As for the Green operators of (), we can define the causal propagator G =
G, — G_ for P’ which yields another exact sequence:

0 — Ti(@ET*M) L5 Ty (@ET* M) —S5 T(QET* M) L5 T(RET*M) — 0.
(2.32)
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Up to now we have studied the properties of P’ and constructed the Green oper-
ators G4. In other words we have tackled only a part of our problem, namely Equa-
tion (2.25a). However, this is not the whole story: In order to characterize the on-shell
configurations of the field h, we need to take into account also the constraint given by
Equation (2.25b). Following the same argument of [BDM14], which in turn is an adap-
tation of a strategy developed in [Dim92] for the electromagnetic field, we translate the
de Donder gauge fixing condition into a suitable restriction on the space I‘tc(®% T*M)
on which the causal propagator G acts. Before proving the main theorem of this section,
which gives us a characterization of the space of gauge equivalence classes of solutions
of linearized gravity, we need some preliminary results.

Lemma 2.2.5. Let G4 be the retarded/advanced Green operators of P' and GY the
ones for O :T(T*M) — T'(T*M). Then

divIGih = —GZ divh, (2.33)
for each h € Ty.(RET*M).

Proof. This is another result that follows from the non-degeneracy of the integral pair-
ing as in Equation (2.28). Indeed, let h € Ty.(®% T*M) and & € T.(T*M), then

(div IG1h,€) = —(IG1h, Vs€) = —(h, G=IVs€) = —(h, G+IVsOGHE)

= —(h,G£I(0 — 2Riem)VsGZ¢) = (h, GxP'VsGZ¢) = (—-GL divh,¢€),
(2.34)

where in the first and the last step we used Lemma 2.2.4, in the third one the identity
DGE = id and in the fourth and fifth some identities of Lemma 2.1.13. The arbitrariness
of £ implies the identity in the statement. O

The following proposition translates the de Donder gauge into restriction on the
domain of the causal propagator.

Proposition 2.2.6. Let Kery. (div) = {6 € Ftc(@% T*M) ‘ dive = 0}. It follows that

i. for each € € Kery. (div), Ge solves the system (2.25), i.e. it is a solution of the
linearized Finstein’s equation in the de Donder gauge;

ii. for each section h € T'(®%T*M) which solves the system (2.25), there exists
e € Kery (div) such that Ge and h differ only by a residual gauge transformation.

Proof. i. Let ¢ € Kery. (div). Since G is the causal propagator of P’, the Equa-
tion (2.25a) is automatically solved by Ge. Furthermore, the equation (2.25b)
follows from the Lemma 2.2.5:

divIGe = —GP dive = 0, (2.35)

where GH = GE — G is the causal propagator for [J.

19



2. LINEARIZED GRAVITY

ii. Let h € T'(®%T*M) be a solution of the full problem (2.25), namely P'h = 0
and divIh = 0. The first equation states that h € Ker P’ = Imy. G, due to
exactness of the sequence (2.32). Therefore, there exists &’ € T'y.(®% T*M) such
that Ge’ = h. By Lemma 2.2.5, the condition (2.25b) becomes G dive’ = 0. Since
a counterpart of the exact sequence (2.32) holds also for G~ and [J, it follows that
Kery. GY = Imy, . Hence there exists n € I'y.(T*M) such that dive’ = . Let
e =¢ —2IVgn € Ftc(@% T*M). First we have to prove that € belongs to the
timelike compact kernel of the divergence:

dive =dive’ — 2divIVgn =0Onp—0On =0, (2.36)

where the second step follows from Lemma 2.1.13. Finally, let us show that Ge
and h differ only by a residual gauge transformation: Let us compute

Ge = Ge' —2GIVgn = h+2VsG oy, (2.37)
where the second step is due to the adjoint of the identity (2.33):

(GIVsn,v) = —(Vsn, IGv) = (n,div IGv) = —(n,GZ divv) = —(VsG n,v),
(2.38)
for each 7 € T4 (T*M) and v € T'.(®%T*M). Thus Ge and h belong to the
same equivalence class, since their difference is of the form Vg, with y :== 2GPn.
Furthermore, the gauge transformation that links them is precisely a residual one,
since Ly = 0.
O

As promised, we can now state a characterization theorem for the space of on-shell
gauge equivalence classes.

Theorem 2.2.7. The map ¢ : Kery, (div)/Imy. P — Copn (M) : [€] — ¢[e] == [Ge] is an
isomorphism.

Proof. Our first concern is proving that the statement is meaningful. The quotient
Kery. (div)/Imy. P is meaningful since the timelike compact image of P is a subspace
of Kery. (div). This can be proved observing that, for each h € T(R%T*M) and v €
F(®§ T*M) with compact overlapping supports, it holds that

(div Ph,v) = —(h,PoVgv) =0. (2.39)

By invoking the non-degeneracy of the pairing we can draw the sought conclusion. Let
us check that the definition of ¢ makes sense. Let ¢ € Kery (div). Since Ge solves the
system (2.25), as stated in Proposition 2.2.6, it identifies a unique equivalence class
in Con (M). In other words the map ¢ — [Ge] is well-defined. It remains to show that
this map descends to the quotient. We need to show that Imy. P is mapped to the zero
equivalence class. Let 1 € Ty(®% T M)

Py +— [GPy] = [G(P' 4 21V gdiv I)n] = [-2V (G div In)] = [0], (2.40)
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where in the second step we used the adjoint of the identity (2.33). This proves that ¢
is a well-defined linear map.

We show that ¢ is both surjective and injective. Surjectivity is a consequence of
Propositions 2.2.2 and 2.2.6. From the first one we know that for each [h] € Con (M)
there exists h' € [h] solving the problem (2.25). Then, there exists ¢ € Kery. (div) such
that Ge differs from A’ only by a residual gauge transformation. Since ¢ identifies a
unique equivalence class [e] € Kery. (div)/Imy. P, and ¢[e] = [Ge] = [h], we can draw
the conclusion.

We still have to prove that for each [¢] € Kery. (div)/Imy. P such that ¢[e] = [0] €
Con (M), it holds [e] = [0]. Let us choose any representative € € [¢] € Ker¢. Then
there exists x € I'(T*M) such that G¢ = Vgx. According to the first statement of
Proposition 2.2.6, G¢ is a solution of linearized gravity in the de Donder gauge. In
particular, it holds

1
0=divIGe =divIVgyx = §DX’ (2.41)

where the last step follows from the last identity in Lemma 2.1.13. On account of the
exactness of the sequence of [J and its causal propagator, we find o € T't.(T* M) such
that GHa = y. Due to the identity adjoint to Equation (2.33), it holds G& = VeGP a =
G(—IVga). This means that €+ IVga = v € Ker G = Imy,. P’ is of the form P’'f, for
a suitable § € I'y.(®% T*M). To conclude we use the fact that & € Ker, (div):

1
0=dive = —divIVgsa+divP' g = —§Da + div (-0 + 2 Riem)If

1 1
= —50a—OdivIf = -0 <2a + div Iﬁ) , (2.42)

where we used the identity div (= + 2Riem)I3 = —Odiv I3, which can be proved
along the same line of reasoning followed for the third identity in Lemma 2.1.13. Since
the timelike compact kernel of [ is trivial, it follows o = —2div I 5. Hence,

£=PpB+2IVgdivipB = Pg. (2.43)

In other words € € Imy. P and then [¢] = [0]. This concludes the proof that ¢ is an
isomorphism. ]

This result gives us the following characterization of the classical space of gauge
equivalence classes of solutions of the linearized Einstein’s equation:

Con (M) = Kerye (div)/ Imy. P . (2.44)
The next step is to construct a suitable algebra of gauge invariant on-shell linear ob-
servables which can test the solutions of linearized gravity. This construction will be

the topic of the next section.
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2.3 Classical observables

In this section we shall construct an algebra of observables for linearized gravity. This
algebra should implement the gauge symmetry (2.22) and the dynamics (2.21). In other
words our goal is to construct a gauge invariant on-shell algebra of observables, dually
paired to the space of solutions of linearized gravity.

We follow closely the procedure described in [BDM14]. Let us start with the space of
off-shell configurations I'(®% T*M). Note that at this level we are not yet considering
gauge symmetry. A natural choice for a space dually paired with this one is given by
the space of compactly supported smooth sections of the bundle, namely I’c(®?g T*M).
These spaces are dually paired by means of the integral pairing (2.28). Therefore, every
section ¢ € T'.(®% T*M) identifies a linear functional on field configurations through
the following definition:

O.:T(RLT*M) — R

hi—s O(h) = (h,e). (2.45)

The space of all functionals of this form is a real vector space with the usual operations
of pointwise sum and multiplication by scalar. We denote it by £¥™(M). Moreover,
this space is isomorphic to the space FC(@% T*M) itself due to the non-degeneracy of
the pairing (2.28). This space of functionals is not yet the correct one because of the
following reason: It does not encompass neither the gauge symmetry nor the dynamics,
and both of these properties are required to interpret such functionals as proper classical
observables for linearized gravity.

We start from the gauge symmetry. The space E¥(M) contains functionals that
distinguish sections h,h’ € T'(®%T*M) which are different as sections but belong
to the same equivalence class in Cog (M). This is a behavior we want to avoid since
sections in the same gauge equivalence class should be regarded as being the same.
This is tantamount to saying that we need to restrict to those functionals that are
invariant under gauge transformations. Recalling the definition of gauge equivalence
classes (2.22), we can make the gauge-invariance condition explicit: Let [h] € Cog (M)
be an arbitrary gauge equivalence class and h', h” € [h] any two representatives. Then
a functional O, € £¥"(M) is gauge invariant if and only if O.(h') = O.(h"). Since b’
and h’ are gauge equivalent, there exists a section x € I'(T*M) such that ' — h” =
Vsx and hence our gauge invariant functional O, is such that Vgy is mapped to
zero. We conclude that a functional O, € E¥"(M) is gauge invariant if and only if
O:(Vgx) = 0 for each xy € T'(T*M). The following proposition gives another equivalent
characterization for functionals invariant under gauge transformations:

Proposition 2.3.1. A functional O. € E¥™(M) is gauge invariant if and only if
dive = 0.

Proof. Let O. € E¥™(M). Then O.(h) = (h,¢) for all h € T'(®%T*M). The gauge-
invariance condition reads that, for all x € I'(T*M), it holds

O-(Vsx) = (Vsx.e) = (x, —dive) = 0, (2.46)
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where, in the second step, we used the fact that Vg and — div are dual to each other,
as stated in Lemma 2.2.4. Since the pairing is non-degenerate, we conclude that the
above identity is true if and only if dive = 0. O

According to Proposition 2.3.1, we identify the space of gauge invariant linear func-
tionals with ' ‘
£ (M) = {OE e (M) ( dive = o} ~ Ker, (div). (2.47)

The next step consists of implementing the dynamics as in Equation (2.21) at the level
of observables. Going deeper into details, our goal is to select a class of functionals in
EM?(M) which is best suited to distinguish between on-shell field configurations. In
other words, we are not interested in all those linear functionals that vanish on each
solution of Ph = 0. Therefore, we declare equivalent two functionals in £"°(M) if
they differ only by a third one vanishing on any section h € F(®% T*M) which solves
Equation (2.21). We have now to characterize such equivalence classes of functionals.
First, we compute the formal adjoint of the dynamical operator P. Let h € I'(®% T*M)
and € € F(®25 T*M) be arbitrary sections with compact overlapping supports:

(Ph,e) = ((P' +2IVgdivI)h,e) = (h, P'e) + (h,2IVgdivIe) = (h, Pe),  (2.48)

where we used Lemma 2.2.4, the formal self-adjointness of the operator P’ and of the
trace reversal I. Consider now an observable in £7Y(M) associated with a section
e € Im, P, namely ¢ = P¢’ for ¢/ € T.(R% T*M). It follows that

O.(h) = (h, Pe") = (Ph,e') = 0, (2.49)

for each h € T'(®% T* M) such that Ph = 0. In order to take into account the dynamics,
we have to take the quotient between the gauge invariant observables and the image of
P. The space of classical observables is
EM (M)  Ker, (div)
E(M) = = . 2.50

(M) Im, P Im,. P ( )
Remark 2.3.2. This quotient is well-defined due to the inclusion Im. P C Ker, (div),
which is a direct consequence of the gauge symmetry of the equations. We recall that
we have already dealt with the well-posedness of a very similar quotient in the proof of
the Theorem 2.2.7. v

Remark 2.3.3. An element of £(M) is an equivalence class of functionals whose ac-
tion is well-defined only on the (gauge equivalence classes of) solutions of the linearized
Einstein’s equation. To show this point let us reveal how the evaluation of those ob-
servables concretely happens. Every [¢] € Ker, (div)/Im. P identifies an observable O
whose action on C,y, (M) is given by selecting two arbitrary representatives, namely:

Op([h]) = Oc(h) = (h,¢e), (2.51)

with h € [h] and e € [¢]. This definition is well-posed and it does not depend on the
choice of representatives just because O is gauge invariant and h is such that Ph = 0.
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Let ¢ € [¢] be another representative. Then there exists 7 € T'.(®%T*M) such that
¢’ = e + Pn. Therefore

Ou(h) = (b + Pn) = (h,&) + (Ph,m) = (hye) = O-(h). (2.52)
It is thus clear that the definition is well posed. \Y,

The space of classical observables £ (M) can be endowed with a (constant) Poisson
structure, which is built with the integral pairing (2.28) and the causal propagator G
associated with the gauge-fixed dynamics operator P’.

Proposition 2.3.4. The map 7: E(M)® E(M) — R defined as
7([el, [n]) = 2(e, Gn) , (2.53)

where arbitrary representatives in the equivalence classes appear in the right-hand side,
s a well-defined blinear and skew-asymmetric map that endows the space of observables
with a Poisson structure.

Proof. First, we prove that 7 is a Poisson structure on £7(M). From its actual defi-
nition we see immediately that 7 is bilinear. Moreover, it is skew-symmetric since

(e,Gn) = —(Ge,n) = —(Ge,n) = —(n, Ge), (2.54)

where we used G* = —G and the symmetry of the pairing (2.28). This makes 7 a
Poisson structure on £ (M), hence on its subspace £7(M). Finally, we have to show
that 7 descends to the quotient space &€ (M). It is sufficient to prove that our definition
does not depend on the choice of representative in the first entry. The same holds
true also for the second entry due to the skew-symmetry of 7. Since two observables
e,¢' are equivalent in (M) if and only if there exists ¢ € T'.(®% T*M) such that
¢/ = e 4+ P(, the Poisson structure is well-defined on the quotient if 7(P¢,n) = 0 for
each ¢ € T.(®%T*M) and 5 € Ker, (div). Yet it holds

(PC,Gn) = (PC,Gn) = (¢, PGn) = (¢, (P + 21V gdiv I)Gn)
= (¢,2IVdivIGn) = (¢, —2IVsG P divny) =0, (2.55)

where we exploit that G is the causal propagator of P’, Lemma 2.2.5 and divny = 0.
Therefore, T is a Poisson structure on £(M). O]

Up to this point, we have studied linearized gravity considering its phase space and
characterizing the space of gauge equivalence classes of on-shell field configurations via
the study of the gauge-fixed dynamics in the de Donder gauge. Furthermore, we have
built a space of on-shell gauge invariant observables dually paired with the configuration
space. Finally, we have shown that the space of observables can be endowed with a
Poisson structure, built only from the structural properties of the differential operator
P’ ruling the gauge-fixed dynamics. The Poisson structure on £ (M) will be crucial in
the quantization of the theory.

Unfortunately, this approach does not grasp some details about the action of the
gauge group that are neglected here. In the next chapter we intend to unveil these
features.
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3 The homotopical approach

In this chapter we develop a different approach for the study of linearized gravity.
Following some recent works, [BSS15; BBS19; BS19a], we adopt an “homotopical ap-
proach” in order to properly encode the gauge invariance encoded in linearized gravity.
This consists in working with a higher categorical structure that goes beyond the naive
gauge orbit space description.

Here we deal only with the classical theory, adapting to the case in hand the results
and reasonings developed in [BBS19] for a linear Yang-Mills theory.

The structure of the chapter will be the following: First, we give to the space of
gauge fields a richer structure codified in a chain complex. Subsequently, we impose
the dynamics through a derived critical locus construction and we calculate explicitly
the solution complex. Finally, a complex of linear observables for linearized gravity is
computed and it is endowed with an unshifted Poisson structure.

3.1 A groupoid for linearized gravity

In the previous chapter, we have studied linearized gravity considering the gauge orbit
space Cof (M) as the space of off-shell gauge fields for the theory. This leads however to
some problems. In particular, it comes out of a simplification of the full gauge structure
of the theory and it fails necessarily to encode some information.

As a matter of fact, in the gauge orbit space we codify equivalence classes. The in-
formation on gauge transformations and on their action as a link between the equivalent
fields, is lost.

Addressing this issue requires to reconsider the concept of gauge field space.

More concretely, let us consider a matter field, say, a real Klein-Gordon field with
mass m > 0. The underlying space is rather simple: Configurations lie in C* (M, R)
and no other structures are required.

As far as linearized gravity (or any other gauge theory) is concerned, the situation
is a little trickier. To give a section of the symmetric, totally covariant, 2-tensor bundle
it is not enough to exhaust the structure of the configuration space. Indeed, it is also
crucial to say how gauge transformations link equivalent fields. Therefore, we have to
attach to the space of sections the maps that implement the gauge symmetry. In this
way, the space of fields for linearized gravity does not have simply the structure of a
set, rather that of a groupoid.
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Definition 3.1.1 (Groupoid). A groupoid G is a small category whose morphisms are
all isomorphisms.

Explicitly, a gauge field groupoid has gauge fields as objects and gauge transforma-
tions as morphisms.
The case of linearized gravity on a physical spacetime M is immediately defined:

LG Obj: hel(RLT*M)
Mor: h X% h+Vgy, withye(T*M)

(3.1)

Instead of using groupoids, it is possible to accommodate gauge fields and gauge
transformations into another mathematical structure, closely related to groupoids. The
structure we are referring to is that of a simplicial set. Let us start with some definitions.

Definition 3.1.2 (Simplex category). The simplex category A is the category whose
objects are non-empty, finite, totally ordered sets and whose morphisms are the weakly
order-preserving maps between them.

Remark 3.1.3. It is common to refer to a skeleton of A, where a fixed representative
in each isomorphism class of objects is selected. In this way, the objects of (a skeleton
of) A are in bijection with natural numbers n € N and one writes

n]={0—1—---—n}. (3.2)

The set of morphisms A([n], [k]) from [n] to [k] consits of the weakly order-preserving
maps f : [n] — [k], so that x <y implies f(z) < f(y). These morphisms are generated
by the following two elementary kinds of maps:

i. coface maps: 9! : [n — 1] — [n], for n > 1 and 0 < i < n, where the image of 0!,
does not contain i € [n];

ii. codegeneracy maps: €t : [n+ 1] — [n], for n > 0 and 0 < i < n, where €, sends
i,i+1€n+1]toic[nl.

All these maps are subject to the following relations, called cosimplicial identities:

ai+1aai1:81z'1+1a¥£_17 0<i<j<n+1
et =cilel 0<j<i<n+l

el 0<i<j<n (3.3)
eh0n 41 =  1dn 0<j<n and i=jj+1

6%71531_17 0<j and j+1<i<n+1

v

Definition 3.1.4. Let C be a category. The category of cosimplicial objects in C is
the functor category C2, whilst the category of simplicial objects in C is the functor
category C2”", with A the simplex category. If C = Set is the category of sets, then the
category Set®” is denoted by sSet and we refer to it as the category of simplicial sets.
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A simplicial set is a functor S : A°? — Set and, thus, it associates each object
[n] € A with a set S[n]. We denote such a set by S,, and we refer to it as the set of
n-simplices of S.

The functor S acts on face and degeneracy maps returning some distinguished maps
between sets of simplices of S. Thus, we have face maps 9" : S, = S,—1 and degeneracy
maps €] : Sp — Sp+1. Thanks to the functoriality of S, these maps fulfill the conditions
dual to (3.3), which are called simplicial identities:

8?8?+1: ?flainJrla 0<i<ji<n+1
+1n _ n+tl .
e ey =€ ey, 0<j<i<n+1
8?:115?: 0 S { <j S n (34)
az‘nHE?: idy, , 0<j<n and i=yj,7+1
ef7topy,  0<j and jH+1<i<n+l

Remark 3.1.5. A simplicial set S is equivalent to a collection of sets .S, together with
maps 0;' and €} as above satisfying the simplicial identities. v

Our aim is to associate a simplicial set to the field groupoid GF“. To this end, we
consider the nerve of the groupoid.

The nerve construction is rather technical and we are going to sketch it without the
aim of exhausting the topic or of dwelling into the details. See [Mac98] for a broader
presentation of this topic.

Let C be a category which comes endowed with a cosimplicial object Ac : A — C.
We use this functor to determine a realization of the standard n-simplex in C. As a

matter of fact Ac induces a functor |—| : sSet — C which behaves like a geometric
realization.
Explicitly, the realization functor |—| : sSet — C is the left Kan extension of Ac

along the Yoneda embedding Y : A < sSet.

A—2

< C
> /F | (3.5)

sSet

Moreover, the realization functor |—| turns out to be the left adjoint in a pair of adjoint
functors, |—| 4 N, the right adjoint being the nerve functor N : C — sSet.

The nerve functor N admits an explicit expression too. For each ¢ € C, the con-
travariant functor N(c) is given by the composition

AcoP )

N(c) : A°P cop > Set. (3.6)
With this construction we manage to associate to each object ¢ € C a simplicial set
N(c). This simplicial set is referred to as the nerve of ¢ with respect to the Ac functor.

We want to compute explicitly the nerve of G*“. Here we follow closely [BSS15].
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We take C = Cat, the category of small categories and functors between them. The
role of the cosimplicial object Ac is played here by the inclusion

A <5 Cat, (3.7)

which embeds the simplex category as the full subcategory of Cat on non-empty finite
totally ordered sets regarded as categories. This means that an object [n] € A is
identified with the category {0 — 1 — .-+ — n} and a morphism of A is identified with
a functor between these totally ordered sets.

Let ¢ be a small category, then its nerve is the simplicial set given by

N(c) : A°P —— Cat? Cat(=0)

Set . (3.8)
Therefore, the set N(c),, of n-simplices of the nerve is the set of functors {0 — 1 —
- — n} — c. This is the same as the set of sequences of composable morphisms
in ¢ of length n. The face and degeneracy maps of the nerve are given by composing
morphisms and inserting identities, respectively.
We can depict the nerve of the groupoid of linearized gravity, N(GX%), as

T(®% T*M) £ [(T*M) x T(®% T*M) £= [(T*M)*? x T(®% T*M) g o
(3.9)
where the arrows are the face maps and the degeneracy maps are suppressed for no-
tational clarity. We give an explicit expression for both face and degeneracy maps:

O T(RLT*M) x T(T*M)*™ — T(RZT*M) x T(T*M)*"=1

(h+vSX17X27"'7Xn)7 1=0
(By X1y osXn) —> S (By X1y ooy X+ Xitly ooy Xn)y, 1<i<n-—1,
(h>X17'--7anl)a 1=n
(3.10a)
and
e 1 D(®FT*M) x T(T*M)*™ — T(Q%F T*M) x T(T*M)*"+1) (3.10b)

(hy X1y xn) = (A X1, -+ -5 X 05 Xt 15 - - - X)) -

Here we used the following notation to indicate the morphisms of GF“: The morphism
h % h 4 Vgy is described by the pair (h,x) € T'(®%T*M) x T'(T*M). The notation
is then extended to composable morphisms in the obvious way: (h, x1, ..., Xn) denotes
the chain of compositions h X h+ Vsxi1 Xy X by Vsx1+: -+ Vsxn-

Remark 3.1.6. This presentation of the content of the gauge field configurations is
somehow more convenient than the groupoid perspective as in Equation (3.1). Indeed,
it makes clear how to describe the observables for the gauge theory. If we interpret
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Equation (3.9) as the simplicial set of gauge field configurations, then the observables,
which have to test the field configurations, are naturally built as functions on it. This can
be done by taking the degreewise algebra of functions on Equation (3.9). By dualizing
the face and the degeneracy maps, cf. Equation (3.10), one finds a cosimplicial algebra
of (classical) observables.

This perspective is related to the BV-BRST formalism, where the I'(7% M) factors
in the nerve (3.9) are interpreted as ‘ghost fields’. For an introduction to BV-BRST
formalism in the context of algebraic approach to field theory we refer the reader
to [FR12a; FR12b). v

This construction is rather general and the peculiarities of linearized gravity appear
nowhere but in the very explicit expression of the nerve. We can now exploit some of
the features of the theory of our interest to simplify the structures above.

Observe that all the sets in Equation (3.9) have a natural vector space structure
inherited from the vector space structures on spaces of sections of vector bundles:

a(h, X1,y Xn) + 00, X0, s x0) = (ah +bh ax1 +bxy, ..., axn +bx,). (3.11)

Moreover, the face and degeneracy maps of the nerve in Equation (3.10) are linear
maps as one can see directly from their expressions. It follows that the simplicial set in
Equation (3.9) is actually a simplicial vector space. This is very convenient because there
exists an equivalence of categories between simplicial vector spaces and non-negatively
graded chain complexes. This result goes under the name of Dold-Kan correspondence.

Theorem 3.1.7 (Dold-Kan correspondence). Let Vecg be the category of real vector
spaces and let Chr>( be the one of non-negatively graded chain complexes of real vector
spaces. Then, there is an adjoint equivalence of categories

N : VeCH%OP <:> ChRZO T (312)

The functor N is called the normalized Moore complex functor.

We refer to [GJ12] for the proof of this theorem.

At the moment, we are only interested in the existence of such an equivalence and
in particular we need an explicit description of the functor A. From the proof one finds
the following: Let V' = (V,)nen be any simplicial vector space with face and degeneracy
maps 0;' : V;, = V,,—1 and €} : V;; = Vj,41. Then the functor N yields the chain complex
N (V) which in degree zero is simply V while in degree n > 1 is the quotient between
V,, and the image of the degeneracy maps: N'(V),, = Vn/sg_l(Vn_l) +-- -+€Zj(Vn_1).
The differential d of the complex is the alternating sum of the face maps. Explicitly,
we set

)

d:= Zn: (—1)'or (3.13)
=0

on N (V).
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Corollary 3.1.8. Let GLC be the groupoid of linearized gravity as per Equation (3.1).
The normalized Moore complex associated with the nerve N(GFC) is

(0)
C(M) = <r(®§OT*M) s F(T(I*)M)> , (3.14)

where the round brackets indicate the homological degrees.

Proof. We have to follow the procedure described above and we refer to Equations (3.9)
and (3.10) for the form of the simplicial set N(GF©).

The zeroth homological degree of €(M) is by definition N(GL%)g = I'(®% T*M).

The first homology degree is

€1 (M) = (@} T*M) x T(T"M)/<§(D (R} T*M)): (3.15)

The image £(T'(®% T*M)) is T(R% T*M) x 0; Therefore €, (M) = T (T*M).
All the remaining degrees of the chain complex are trivial. Indeed,

(i + 1)-th
~ =~
"N N(GEY), ) =T(RET*M) x T(T*M) x ---x 0

)

X x IT(T*M), (3.16)

n

hence, I'(®% T*M) x T(T*M)*" = el Y (N(GFC) 1) 4+ -+ - + "1 (N(GLE),-1).
Finally, we need to compute the differential d : €; (M) — €o(M). Let x € I'(T* M),
then the differential as per Equation (3.13) reads explicitly

dx = 85(x,0) = 91 (x,0) = Vsx. (3.17)
This concludes the proof. ]

We refer to the complex in Equation (3.14) as the linearized gravity field complex
on M. Let us comment on the physical content of such complex. The elements in
degree 0 are the gauge fields h € I‘(®% T*M) and those in degree 1 are interpreted
as gauge transformations y € I'(T*M). The differential encodes the action of gauge
transformations on gauge fields, i.e. x : h = h + Vgx.

3.2 The dynamics

The linearized gravity field complex €(M) from the previous section carries all the
information regarding the structure of off-shell configurations of linearized gravity. Up
to this point, no information about the dynamics has been taken into account. Indeed,
the linearized Einstein’s equations (2.9) did not come into play at any level of our con-
struction. In other words, the complex in Equation (3.14) contains only the kinematical
and gauge structures of the fields.

Therefore, in this section we want to implement the dynamics in a suitable way. We
recall here that the category Chg of chain complexes and chain maps can be endowed

30



3.2. The dynamics

with a model structure whose weak equivalences are quasi-isomorphisms. Complying
with the model category philosophy, weakly equivalent complexes are regarded as being
the same. This applies also to the way the dynamics is encoded

We are going to establish an analogue of the principle of least action that works
properly in this framework.

Let us start by defining a quadratic action functional associated with the linearized
Finstein’s equations. We recall that they are written in terms of a formally self-adjoint
operator

P:Cy(M) — €o(M), h+ Ph=(—0+ 2Riem +2IVgdiv) Ih. (3.18)

Moreover, both the degrees 0 and 1 of the field complex in Equation (3.14) are en-
dowed with pairings which are given by the integral pairing as per Equation (2.28). For
convenience, we write out explicitly these pairings:

(_’ _) : Q:O(M);(Q:O(M) - R? (hv u) = /M habucdgacgbd:ug ’ (3.19&)
(—,—): G(M)x€ (M) — R, (x,n) = /M Xag™ tig - (3.19b)

A quadratic action functional is constructed via both the dynamical operator P and
the integral pairing in Equation (3.19a).

Definition 3.2.1. The quadratic action functional for linearized gravity is formally
defined as

S:Q:()(M)—>R

1 1
s S() = 5 (0P = 5 [ han( PR 5"y

(3.20)

Remark 3.2.2. Observe that the action functional S extends naturally to a chain map
from the field complex to R, seen has a chain complex concentrated in degree 0. This
is a direct consequence of the gauge invariance of the dynamical operator P. Indeed,
we need to check the commutativity of the following diagram

0 «— D(®%T*M) <5 T (T*M)

l Sl l (3.21)
R

0 0

The only non straightforward check concerns the right square. Yet
1 *
S(Vsx) = 5(Vsx, PVsx) =0, ¥x e I(T"M), (3.22)
since VgI'(T*M) C Ker P, see Theorem 2.1.14. v
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3. THE HOMOTOPICAL APPROACH

To formulate a principle of least action we need to write a variation 6.5 of the
action functional. Therefore, let h € T'(®% T*M), u € T'o(®% T*M) and A € R. We are
working formally here by choosing a compactly supported section u: This ensures the
finiteness of all quantities in hand. We compute

S(h+ ) — S(h) = %(h 4 hu, P(h + M) — S(h)

= % {(h, Ph) + X[(h, Pu) + (u, Ph)] + \*(u, Pu)} — S(h)

)\2
= A(Ph,u) + 5 (u, Pu), (3.23)

where the last step follows from the formal self-adjointness of P and the fact that
the pairing is symmetrical. Therefore, by taking the limit for A — 0 of the difference
quotient, we get
S(h+ Au) — S(h) r=o0
A

The functional 6}, : To(R%T*M) — R, 65, = (Ph,—) is analogous to the Gateaux
derivative of the action S along the direction of the field h. Since the pairing (—, —)
is non-degenerate, it is possible to identify the functional §.5; with the smooth section
PheT(®FT*M).

Therefore, we can interpret §S as a section of the trivial vector bundle I'(®% T M) x
N(®ZT*M) ™5 T(RLT*M):

(Ph,u) = 6S)(u) . (3.24)

68 :T(RLT*M) — T(RET*M) x I(Q%T*M), 6S(h) = (h, Ph). (3.25)

So far we have considered the action functional simply as a map from I'(®% T*M)
to R. Now we need to extend our construction taking into account the chain complex
structure of the field configurations and the fact that S is naturally a chain map, as
stated in Remark 3.2.2.

The first step consists of giving a notion of cotangent bundle for the field complex
€(M). A reasonable choice is to mimic the structure of a trivial cotangent bundle.
Thence we define the following cotangent bundle complex

T*C(M) = €(M) x Co(M)*, (3.26)

where €.(M)* is a smooth dual of the compactly supported version of the linearized
gravity field complex. This smooth dual is built with the idea of constructing a chain
complex which is dually paired with €.(M) with respect to a pairing which is given
by the integrals in Equations (3.19). To be explicit, this pairing is defined as the chain
map

(= =) C(M) @€(M) — %){), (3.27)

which pairs the proper section spaces coherently with the already given integral pairings.
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3.2. The dynamics

We set "
-1
Co(M)* = <F(T*M) A (@3 T*M)) : (3.28)

Observe that the homological degrees are flipped with respect to those of the original
complex €.(M). The tensor product €.(M)* @ €.(M) has the following non-vanishing
degrees

(€(M)* @ €e(M))-1 =T (T"M) @ Te(®5 T*M)
(€M) ® €(M))o = (D(T*M) ® T(T"M)) @ (I (@ T*M) © TR} T"M))
(C(M)* @ €C(M)) =T(RLT*M) @T(T*M) . (3.29)

Moreover, the differentials are given by the graded Leibniz rule, as per Equation (1.13),
and they read explicitly:

d: (€(M)" @ €(M))1 — (Ce(M)* @ &E(M))o,

. (3.30)
dh®x)=divh®x+h®Vgyx,
and
d: (C(M)" @€ (M))o — (€c(M)* @ &€ (M))-1, (3.31)
dix®@n+h@u)=-x®Ven+divh@u. '
A direct calculation shows that (—, —) is a chain map. This amounts to checking com-

mutativity of the diagram below

(D(T*M) @ T(T*M)) & (T(®% T*M) ® To(@FT*M)) « Y EEEYs (@2 pepp) @ To(T* M)

(—,—% l

0

Let us check the commutativity condition: For each homogeneous element h ® x €
I(®LT*M) @ T.(T*M), we have

(div o, x) + (h, Vsx) = (divh, x) + (= divh, x) =0, (3.32)

where in the last step we used Lemma 2.2.4.
With this notion of smooth dual complex we are finally able to compute the cotan-
gent bundle complex (3.26).

Lemma 3.2.3. Let ¢(M) = (T'(®%T*M) s I(T*M) | be the linearized gravity

field complex. Then, its cotangent bundle complex reads explicitly as

(-1) © v

T*¢(M) = <F(T*M) AT (@2 T M) x T(QF T*M) Y5 F(T*M)>, (3.33)

where 11 : T(RLT*M) — T(QLT*M) xT'(R%T*M) is the inclusion in the first factor,
while w3 : T(RZT*M) x T(QLT*M) — T'(®Q% T*M) is the projection onto the second

one. As usual, the round brackets indicate the homological degrees.
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3. THE HOMOTOPICAL APPROACH

Proof. We need to compute the product of the base €(M) and the fibre €.(M)*:
(0) v (1) D (0)
T*¢(M) = | T(®3T*M) < D(T*M) | x | T(T*M) <2 (@ T*M) | . (3.34)

The product is computed degreewise:

(T7e(M))
dn : (T*C(M))

= (M) x Ccpn(M)*,

dy, (u,v) = (du,dv). (8:35)

n n—1>

To be explicit, we find the following non trivial degrees:
o degree 1: I'(T*M);
e degree 0: T(R4T*M) x T(QLT*M);
o degree -1: I'(T*M).

With reference to the differentials, we get dy x = (Vgx,0) = t1Vgx for the one from
degree 1 to degree 0, and dg (h, w) = (0,divw) = divma(h,w) for the one from degree
0 to degree -1. O

Since now we have a model for the cotangent bundle, a suitable variation of the
action chain map can be presented. This will be a section §S : €(M) — T*E(M). With
section here we mean that the composition 7 o §S coincides with the identity chain
map id, where 7 is the projection onto the first factor. The actual definition of this
section is

¢(M) 0+ T(®%T*M) ¢ T(T*M)
5s = J (id,P)l idl . (3.36)

T*¢(M) D(T*M) 45— I(®%T*M) x T(R%T*M) - D(T"M)

Observe that this map is obtained by extending the variation of the action S, as per
Equation (3.25), consistently with the section condition.

Remark 3.2.4. It is easy to check that S is a chain map. Indeed, the commutativity
of the previous diagram is a consequence of the gauge invariance of the dynamical
operator P.

The left square commutes because divma(id, P)h = div (Ph) = 0, where the last
identity is the dual of PVgh = 0, which is stated in Proposition 2.1.14. The right
square commutes because (id, P)Vgx = (Vsx, P(Vsx)) = (Vsx,0) = t1Vx. v

To find the critical points of the action S, we need to intersect the variation of the
action 05 with the zero-section 0 : €(M) — T*€(M) of the cotangent bundle.
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3.2. The dynamics

The zero-section is defined as the chain map

¢ (M) 0 [(QLT*M) 5 T(T*M)

0 = l (idao)l idl . (3.37)

T*e(M) [(T*M) ¢ T(®FT*M) x (R T*M) 4 T (T* M)

Finding the critical points amount to taking a pullback of our two chain maps. This is
formalized in the following definition.

Definition 3.2.5 (Linearized gravity solution complex). Let €(M) be the linearized
gravity field complex on a physical spacetime M and let T*€(M) be its cotangent
bundle. Then let 6.5 : €(M) — T*€(M) be the variation of the action chain map, built
with the dynamical operator in Equation (2.10). The corresponding solution complex
is defined as the homotopy pullback

h |ss (3.38)

in the model category Chg.

Remark 3.2.6. A pullback is the categorical semantics of an equation, hence it is
natural to come up with this notion if we want to find critical points of the action.
However, the ordinary pullback is not the appropriate choice. Indeed, the category of
chain complexes is endowed with the structure of a model category and then we need
to consider quasi-isomorphic chain complexes as the same. Unfortunately, the ordinary
pullback does not preserve weak-equivalences, c¢f. [Hov07]. This means that replacing
¢(M) by a quasi-isomorphic chain complex may not yield a quasi-isomorphic solution
complex via an ordinary categorical pullback.

This is the reason why Definition 3.2.5 is given in terms of an homotopy pullback in
the model category Chgr. This is the best approximation, technically a derived functor,
of the ordinary pullback which preserves weak-equivalences. As a consequence, the
solution complex Gol(M) that we have defined encodes the equation of motion only in
a weak sense, that is “up to homotopy”. v

We need now to compute the homotopy pullback in order to get the explicit form
of the linearized gravity solution complex. This is exactly the content of the following
proposition.

Proposition 3.2.7. The linearized gravity solution complex of Definition 3.2.5 is given
explicitly by

(=2) (=1) P (0) v (1)
Sol(M) = (F(T*M) T D(RET*M) +—T(RLT*M) +=- F(T*M)) . (3.39)
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3. THE HOMOTOPICAL APPROACH

Proof. We start by recalling that Chg is a (right) proper category. This implies that
any homotopy pullback can be calculated by taking the ordinary pullback of a diagram
obtained by replacing one of the morphisms by a weakly equivalent fibration. We refer
the reader to [Hir09] for all the details.
Therefore, we look for a complex Z, a quasi-isomorphism ~ and a fibration 0 such
that
¢(M) —2—— T*¢(M)

\ / : (3.40)

Observe that the zero-section in Equation (3.37) is defined as the product of the identity
map id : €(M) — €(M) and the zero map 0: 0 — €.(M)*. Our problem reduces thus
to finding a fibration that replaces 0: 0 — €.(M)*.
(=1 .. (0

Let us introduce the chain complex D := [ R A4 R ). This is weakly equivalent
to the 0 complex since all its homologies are trivial. See Lemma 1.1.12.

We can use this to factor the map 0 — R, where R is concentrated in degree 0. To
be very explicit, we draw the following triangle

0 ——R

N (3.41)
D

where the map ¢ : D — R is given by

D R <94 R
J=1 1 e (3.42)
R 0+—R

and it is manifestly a fibration.

Let us take the tensor product of the factorization in Equation (3.41) with €.(M)*.
We get the following factorization of the map 0 — €.(M)* into a weak equivalence
followed by a fibration:

0—" D®C(M)* “EY% R® ¢ (M) =2 ¢ (M) . (3.43)

Finally, we need to take the product with €(M) of the factorization above in order
to get the triangle in Equation (3.40). Referring to this latter diagram, we have Z =
(M) x (D ®€(M)*) and 0 = id x (+ ®id). Chain map 0 is a fibration since it is
surjective in each degree and € (M) = Z is a weak equivalence since it is the identity
at the level of homology. With some straightforward calculations, we can explicitly
write them:

(-2) (=1)

)
7 = (D(T* M) <A (@2 T M) x T(T* M)

(1)
D(®%T*M) x T(@%T*M) « Y5 T(T*M)),
(3.44)

(id,div)
%
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where the fibration 0 is the identity in degrees 0 and 1 and it is the projection mo onto
the second factor in the degree -1.

Therefore, the homotopy pullback of the diagram €(M) -2 T*€ (M) LA (M) is

(weakly equivalent to) the ordinary pullback of Z -2 T*€ (M) 25 &(M).

The pullback can be computed degreewise by taking the intersection between the
two morphisms 0 and §5. More concretely, we have to take the chain subcomplex of
Z x €(M) such that (the extensions of) the two morphisms coincide. The following
diagram illustrates the situation:

(id,div)ma x3(Vsm1,0,Vgma)
%

Zx €M) T(T*M) <20 (@2 7MY x T(T*M) T(®%T*M) (T M)*?

(=)o = (=) (=)o (=) i (=)

T*¢(M) 0 D(T* M) ¢ I(RLT*M)*? s DT M)

By calculating, degree by degree, the subspaces which fulfill the required equalities and
the induced differentials, we find

(=2) ( 1) (0)
Z Xpeeary C(M) = <F(T*M) W (@27 M) <L D(QFT* M) <5 T( T* )

(3. 45
namely the stated solution complex.

Remark 3.2.8. Let us go back, for a moment, to the necessity of imposing the equation
of motion only in a weak sense. If we had enforced it in a strong sense, i.e. with

the ordinary pullback of ¢(M) -2 T*¢ (M) £ ¢(M), we would have found the chain
complex

0 gy (1)
Solgy (M) = [ Ker P «—T'(T*M) | . (3.46)

This is a truncation of our “weak” solution complex as per Equation (3.39). Observe
that in this case the vector space in degree 0 contains those sections h that solve the
linearized Einstein’s equations (2.8), while the vector space in degree 1 contains the
gauge transformations.

It is also interesting to consider its homologies:

o Hi(Goly,(M)) = Ker Vg describes those gauge transformations that act trivially
on gauge fields;

e Hy(Goly,(M)) = Ker P/Im Vg is the usual space of on-shell gauge equivalence
classes that we denoted previously as Coy (M).

\Y

We can return now to consider the linearized gravity solution complex Gol(M).
We can give a physical interpretation of the components of Gol(M) in terms of the
BV-BRST formalism:
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3. THE HOMOTOPICAL APPROACH

e the fields in degree 0 are the gauge fields h € T'(®% T*M);
e the fields in degree 1 are the ghost fields x € I'(T*M);

e the fields in degrees -1 and -2 are interpreted as the antifields ht € T'(®% T*M)
and x* € T(T*M) of the gauge fields h and the ghost fields x respectively.

Finally, it is of interest to consider the homologies of Gol(M) and to try to compute
them explicitly. We find the following:

e H(Sol(M)) = Ker Vg describes again those gauge transformations that act triv-
ially on gauge fields. Observe that Ker Vg = {x € I'(T*M) | Vaxs + Vixe = 0}
is the vector space of Killing vector fields (up to a musical isomorphism) on the
Lorentzian manifold (M, g). Therefore, this homology conveys geometrical in-
formation about the isometries of the background spacetime. It is known from
general results that this is a finite dimensional vector space. In particular, for a
connected manifold with dimension equals to n the Killing vector fields space has
dimension at most n(n + 1)/2. See for example [ONe83, Lemma 28];

e Hy(Gol(M)) =Ker P/Im Vg = Copn (M) is the usual vector space of gauge equiv-
alence classes of linearized gravity solutions;

e H 1(Sol(M)) = Ker (div)/Im P captures obstructions to solving the inhomoge-
neous linearized gravity equation Ph = t with t € I'(®% T*M) such that divt = 0;

o H 5(Gol(M)) = I'(T*M)/Im (div) = 0 is always trivial. This is proved in the

following lemma.

Lemma 3.2.9. Let M be a physical spacetime. Then, the divergence operator div :
L'(®%T*M) — T(T*M) is onto.

Proof. We recall that T')./.(F) denotes the space of sections of a finite-rank vector
bundle F' with past compact and future compact support, respectively.

We will show that there exist maps A : Cpe/pe(T*M) — ch/fc(®% T*M) such that
it holds idppc Jpe(T*M) = div \*. This will be sufficient to prove the claim. Indeed, let
x € T'(T*M) be any section. Consider a partition of unity {f4, f—} on M, such that
f+ =1 on a past/future compact domain. Using the property fi + f— = 1, one gets

X = fex+fox =div(AT(fix)) +div (A (F-x)) = div (AT (fax) + A7 (f-x)), (3.47)

thus proving that y is in the image of the divergence operator.

Let us construct these maps. Let G+ be the retarded/advanced Green operators for
the differential operator P/, we introduced in Section 2.2. They admit an extension to
past/future compact sections. We denote these extensions with the same symbol,

G i Tpespe(@T M) — Ty 1o(@F T M) . (3.48)
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These operators have the usual support properties and it holds P’ o G4 = Gy o P/ =
idp. T)oso(®% T M) A similar extension GY : T, Jfe(T* M) = Tpese(T M) holds true for
the Green operators of [.

We define
A= —2GL o Vy. (3.49)

We need to check only if the sought identity holds:

div \F = —2divG+Vg = —2divIG+IVg = 2GT divIVg = GE0 = idr, (M) »
(3.50)
where Proposition 2.1.11 and definition of G+ are used in the second step, Lemma 2.2.5
in the third step and the last identity in Lemma 2.1.13 in the fourth one. Since we
exhibited explicitly the maps A*, the proof is complete. ]

Remark 3.2.10. Observe that the complex Sol(M) is not always weakly equivalent to
the chain complex Co, (M) concentrated in degree 0. This means that it contains more
refined information than the on-shell gauge orbit vector space considered in Chapter 2.

Let us take, for simplicity, a background manifold M connected and of constant
(sectional) curvature. In this case we can say something more about the homologies.
A constant curvature manifold is also maximally symmetric, as it is shown in [Eis97].
Hence H;(&ol(M)) = Ker Vg = R!Y if M is simply connected and dim M = 4. More-
over, the computation of H_1(Sol(M)) can be reduced to that of the cohomology of
the Calabi complex, or rather of its formal adjoint, which have been studied in [Khal7].
The part of the Calabi complex we are interested in reads explicitly:

0 — 0(T*M) XS (@2 T* M) L5 T( @4 T M) — -
divl -~ -7 3.51
Dl o Dl o Ell e (3.51)

0 — T(T"M) 552 D(®§T*M) —> T(Q T*M) — -

where T'(®% T*M) C T'(®1T*M) is the subset of Riemann-like symmetric tensors,
i.e. 4-tensors t such that topea) = t(apyed = tabed — tedab = tjabgda = 0, (Bh)abed =
V(avc)hbd — V(bvc)had — V(avd)hbc + V(bvd)hac and (tr't)qp == .’ i the trace with
respect to the second and fourth indices. The solid arrows in the diagram commute,
while dashed arrows are the homotopical operators that induce the vertical cochain
maps, ¢.e. it holds

O=2diviVg, onI(T*M), (3.52a)
O =2VsdivI +tr' B, onT(R%T*M). (3.52b)

We denote with HC?(M) the i-th cohomology of the Calabi complex. It is immediate
to realize that HCO(M) = Hy(Gol(M)).
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We need also to consider the formal adjoint Calabi complex. It is obtained by taking
the formal adjoint of each arrow in complex (3.51). We get

0+— T(T*M) 2ET(@LT* M) £~ T (@4 T*M) +— - --
1
4

bt
—IVg _--T -
] e of

99 7 DT (3.53)
0 +—T(T*M) = T(QFT*M) 5 T(RK T*M) +— - --

-

where ® is the Kulkarni-Nomizu product, (§®h)abed = gachvd — gbclad — Jadhve + gvdhac,
while B* is given by (B*t)p = 4V VD, pq. We denote the i-th homology of the formal
adjoint Calabi complex with HC!(M).

As a consequence of the following Proposition 3.2.11, on a spacetime M of con-
stant curvature one has H_1(Sol(M)) = kerdiv/Im P = kerdiv/Im B* = HC{(M).
In [Khal6] the homology groups HC!(M) are shown to be isomorphic to the cohomol-
ogy groups of the sheaf of Killing-Yano tensors® on (M, g). v

Proposition 3.2.11. Suppose M is a physical spacetime, as per Definition 2.1.9, of
constant curvature, then Im P = Im B*, where P is the dynamical operator of Equa-
tion (2.10) while B* is the differential in the formal adjoint Calabi complex (3.53).

Proof. We can use the homotopical operators in the complex of Equation (3.53) writing
P in a more useful form. Indeed, it holds the identity O = 2IVgdiv + 1B*(g ® —) on
I'(®%T*M) and, thence, we get

1
Ph=—2B"(g©Ih), Vhe D(®RLT*M). (3.54)

We start by proving the set inclusion Im P C Im B*. Let ¢ € Im P, then there exists
h € I'(®%T*M) such that Ph = t. From Equation (3.54) it follows t = B*h, where
h = —ig ® Ih. Therefore, t € Im B*.

Consider now the opposite inclusion. Let ¢ € Im B*. There exists h € T'(Q% T*M)
such that t = B*h. We need to find h € T'(®% T*M) such that Ph =t = B*h. We are
going to construct h with the help of a partition of unity {f;, f—} with the property
that f+ = 1 on a past/future compact domain. We set

h:=G,B*(fih)+ G_B*(f_h). (3.55)
Observe that A fulfills the de Donder condition:

divIh =Y divIGoB*(foh) ==Y G5 div B*(fuh) =0, (3.56)
a=+ a==+

'Killing-Yano tensors are solutions on (M, g) of the Killing-Yano equation, V(atvi)bs...b, = 0, for
t € I'(®"T*M). For the definition of sheaves and for the construction of the Killing-Yano sheaf we
refer to [KS05; Khal7].
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where in the second step Lemma 2.2.5 is used and the last identity holds since div B* =
0, ¢f. Equation (3.53). We just need to check that the section we built is a solution for
our problem. Let us calculate

Ph=Ph=> PGyB*(foh) =Y _ B*(fah)=B*h=t, (3.57)
a==+ a=+

where in the first step we used Equation (3.56), in the third the fact that Gi are
retarded /advanced Green operators for P’ and finally the fourth one follows from the-
linearity of B*. Thence, Im B* C Im P. We conclude that the equality Im B* = Im P
holds true. O

Example 3.2.12. We give here an example of a constant curvature, non simply
connected, Ricci-flat, Lorentzian manifold M whose corresponding solution complex
Sol(M) has non trivial homology groups in both degrees 1. It provides a concrete
example of a spacetime where all the higher structures that we introduced come into
play.

Let M* := (R* 7) be the Minkowski spacetime whose line element reads explicitly
ds?=— (d x0)2 + Zg’zl (d xi)Q. We introduce the equivalence relation: z% ~ 2%+ 1, for
a = 1,2, 3. By taking the quotient by this equivalence relation, we contruct the manifold
M = R*/ ~, which is isomorphic to R x S* x S! x S'. We endow M with the Lorentzian
metric induced by 7 via the quotient map p : R* — M. Therefore, M is a constant
curvature, Ricci-flat, globally hyperbolic Lorentzian manifold. Observe that the Cauchy
surface of M is isomorphic to S' x S' x S! and thus it is compact. Moreover, M is not
simply connected since its fundamental group is 71 (M) = Z3, as a quick computation
reveals. From Remark 3.2.10 we know that the following isomorphisms hold true:

Hy(Gol(M)) = HC°(M), H_i(Sol(M))= HC}(M). (3.58)

Furthermore, we can consider the analogue of Calabi complex (3.51) with compact
and timelike compact supports. We denote the corresponding cohomology groups by
HCi{(M) and HC{.(M). Since M has a compact Cauchy surface compactness and time-
like compactness of closed subsets are equivalent conditions, as it is shown in [Bael4].
By exploiting this and the analyses in [Khal6; Khal7], we manage to write the chain
of isomorphisms

HC, (M) = HCYM)" = HCL(M)" = HC°(M)" . (3.59)
Finally, isomorphisms in Equations (3.59) and (3.58) yield
H_1(Sol(M)) = H,(Sol(M))*. (3.60)

Therefore, we can compute only one of the two homology groups, the second being
isomorphic to its dual. The computation of H;(Sol(M)) can be performed following
the ideas in [Khal7] for the non-simply connected case. According to it, the homology
group H;(Sol(M)) is isomorphic to g™, i.e. the m-invariant subspace of g, where g is the
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Lie algebra of the isometries group of the universal cover of M and 7 is the composite
adjoint monodromy representation of my(M). Per construction, M is covered by M*,
hence, g =2 R* x50(1, 3) is the Poincaré Lie algebra. The composite adjoint monodromy
representation is given by the composition Ad o p : Z3 — Aut (g), where

p: 73 — R % 0(1,3)

(o) -((3)) o

C

is the action by isometries of deck transformations on M*, and

Ad:R* % O(1,3) — Aut (g)

(v,A) — (Ad(v,A) : (p, L) — (Ap — ALA™'v,ALA™Y)) (3.62)
is the adjoint representation of the Poincaré group. Therefore, we write
" ={(p.L) 5| Adop(1)(p,L) = (p. L), Va,b,c € Z} (3.63)
and, after a straightforward calculation, we get
0" ={(p,0) € g} *R". (3.64)

We conclude that both the homology groups of the solution complex are non trivial
since the isomorphisms Hq(Sol(M)) =2 R?* hold true. A

3.3 Classical observable complex and Poisson structures

We are going to show that the solution complex Gol(M) comes naturally endowed with
a shifted Poisson structure. This could be physically interpreted as the antibracket of the
BV-BRST formalism. In order to be able to construct a quantum theory for linearized
gravity, we will need an unshifted Poisson structure. We will conclude showing that
the solution complex can be endowed with such a structure, by relying heavily on the
hypothesis that M is globally hyperbolic.

All these structures need to be defined on a complex of linear observables. Since this
has to be dually paired to the solution complex, we give the following definition.

Definition 3.3.1 (Complex of linear observables). Let M be a physical spacetime, as
per Definition 2.1.9, and let Gol(M) be the linearized gravity solution complex on M.
The complex of linear observables for Sol(M) is defined as its smooth dual. We denote
it by Obs(M) and we set

(-1) , (0) (1) B (2)
Obs(M) = (Fc( M) &Y T (@2 T M) L T (@ TM) 122 FC(T*M)> . (3.65)
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3.3. Classical observable complex and Poisson structures

Lemma 3.3.2. The complez of linear observables, Obs(M), as per Definition 3.3.1 is
dually paired to the solution complex Sol(M).

Proof. The proof follows the same lines of the analogous one for the complex €(M)*
in Section 3.2. The evaluation chain map,

(—,—):0bs(M)®Sol(M) — R, (3.66)

is built with the integral pairings as per Equations (3.19).
Let us write the degree 0 of the tensor product complex Obs(M) @ Sol(M):

(Dbs(M) ®@ Gol(M))g = (Te(T*M) @ T(T*M)) & (T(RFT*M) @ T(RFT*M)) &
3 (T(RET*M)@T(RET*M)) @ (Lo(T*M) @ T (T*M)).
Observe that the spaces paired in this degree are consistent with our pairing, which
yields a well defined map from the degree 0 to the real numbers.
Finally, one has to prove that the differentials in (3.65) make the pairing into a

chain map. This can be shown by a direct calculation, once the differential of the
tensor product complex is computed explicitly. ]

We give the following physical interpretation of the elements of each degree of
Obs(M). This is a direct consequence of how the evaluation chain map acts, pairing
observables and fields:

e clements € € Dbs(M)y = T'.(®% T*M) are linear observables for the gauge fields;
e clements n € Obs(M)_; = (T*M) are linear observables for the ghost fields;

e clements a € Obs(M); = T(R% T*M) and € Obs(M)y = To(T*M) are linear
observables for the antifields h* and x*, respectively.

Let us write the evaluations of these observables on fields of Gol(M) by making ex-
plicit the pairings. For each gauge field h € Sol(M)y = I'(®%T*M), ghost field
X € Gol(M); = T(T*M) and antifields bt € Gol(M)_; = T(R%T*M) and X} €
Sol(M)_o =T (T*M), we have

(e,h) = / Eapheag® g™ g, (n,x) = / Naxv9™ g » (3.67a)
M M
(a, h¥) = /M aght %", (B,x%) = /M Baxt g™ tg - (3.67b)

We can now write the homology groups of the complex of linear observables.

o H 1(Obs(M)) = I'o(T*M)/Im. (div). It contains linear observables that test
those ghost fields that act trivially on gauge fields, ¢f. Proposition 3.3.5 and
Remark 3.3.6;
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o Hy(Obs(M)) = Ker. (div)/Im. P = £. This is the usual space of gauge invariant
on-shell classical observables for linearized gravity. We have already found it by
following another path in Section 2.3, Equation (2.50);

e Hi(Dbs(M)) = Ker. P/Im.Vyg is the space of linear observables testing ob-
structions to solving the inhomogeneous linearized gravity equation Ph = t with
t € Ker (div), see again Proposition 3.3.5 and Remark 3.3.6;

e Hy(Obs(M)) = Ker. Vg. This homology is always trivial, as we show with the
following lemma.

Lemma 3.3.3. Let M be a physical spacetime, see Definition 2.1.9. The Killing oper-
ator on compactly supported sections Vg : To(T*M) — T'o(®% T*M) has trivial kernel.

Proof. Let n € T.(T*M) be a compactly supported section in the kernel of Vg. There-
fore, it holds
va”b + vbna =0. (368)

Let us take now the divergence of (3.68):
0= V*(Vamy + Vna) = Om + ViV + R “yng = Onp + ViV 94, (3.69)

where we used the commutation relations between covariant derivatives and the fact
that g is Ricci-flat per hypothesis. By contracting the identity (3.68) with the metric, we
find that V1, = 0. By inserting this identity in Equation (3.69) we get O, = 0. From
standard results on wave operators on globally hyberbolic manifolds, see [BGP08], we
know that the wave operator [J on compactly supported sections I'.(7*M) has trivial
kernel. This yields 7 = 0 and thus the statement is proved. O

Remark 3.3.4. The zeroth homology of the observable complex coincides with the
space of classical on-shell gauge invariant observables. This has to be confronted with
the fact that the zeroth homology Hy(Sol(M)) is the vector space of on-shell gauge
equivalence classes of linearized gravity fields. Recalling the content of Chapter 2, we can
highlight that these spaces are dually paired, that is, each [e] € Hy(Obs(M)) identifies
a linear functional on the space of on-shell gauge equivalence classes Hy(Sol(M)) via
the integral pairing (3.19a). v

There exist duality relations also between the other homology groups of the linear
observable and solution complexes. This duality is due to the integral pairings between
sections and compactly supported sections, which descend to the quotient.

Proposition 3.3.5. Let M be a physical spacetime and let Sol(M) and Dbs(M) be
the corresponding solution and linear observable complexes previously introduced. Then
the following inclusions hold:

i. Hi(Dbs(M)) C H_1(Sol(M))*,
ii. H_1(Dbs(M)) C Hi(Sol(M))*,
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3.3. Classical observable complex and Poisson structures

where we are here considering algebraic dual spaces.

Proof. Let us start with the first inclusion. We need to prove that it is possible to
associate to each element [a] € H(Obs(M)) = Ker, P/Im.Vg a linear functional
Pla) : H-1(S0l(M)) = Ker (div)/Im P — R. This can be done by means of the integral
pairing (3.19a). Let us define

o) : Ker (div)/Im P — R, [1f] — ¢)([hY]) = (o, hY) (3.70)

where in the last formula we picked arbitrary representatives in the equivalence classes.
We need to prove that the definition does not depend on the choice of representatives.
Therefore, let o ~ o/ = a4+ VgB and ht ~ w't = bt + Ph, for § € T.(T*M) and
h € T(®%T*M). We have

(o, ') = (a + VB, ht + Ph) = (a, h*) + (o, Ph) + (Vsf8, h) + (Vs83, Ph)
= (o, h¥) + (P, h) + (B, —Vsh?) + (PVsB,h) = (a, ht), (3.71)

using Proposition 2.1.14 and the fact that a € Ker, P and h* € Ker (div). The map
@[ is thus well defined on the quotient and it is linear because the pairing is a bilinear
map.

The second inclusion is proved in a similar fashion. Let [n] € H_1(Obs(M)) =
[(T*M)/Im, (div) and define

Yy H1(Gol(M)) =KerVg — R, x = p(x) = (1,X) - (3.72)

The pairing that appears in this definition is that in Equation (3.19b). Again, the
definition is given in terms of an arbitrary representative in the equivalence class. We
need to show that the definition is well-posed. Then, let n ~ 1’ in T.(T*M)/ Im, (div).
It means that there exist ¢ € Fc(@% T*M) such that n’ = n + dive. Let us explicitly
compute:

Y () = (', x) = (n+dive,x) = (n,x) + (1, =Vsx) = (1,X) , (3.73)

where we used Lemma 2.2.4 and the fact that xy € Ker Vg, per hypothesis. Therefore,
the map 1)y, is well defined on the quotient and it belongs to Hi(Soal(M))*. O

Remark 3.3.6. Consider the special case of a background (M, g) of constant curva-
ture. The homology groups of the complex of linear observables can be related to the
cohomology counterparts of the compactly supported Calabi complex and of its for-
mal adjoint complex. These are the subcomplexes of the complexes (3.51) and (3.53)
with compactly supported sections. We introduce the following notation for the above
mentioned (co)homology groups: HC%(M) is the i-th cohomology group of the Calabi
complex with compact supports, while HC;(M) is the i-th homology group of the for-
mal adjoint Calabi complex with compact supports. Observe that HCy(M) is exactly
the same as H_1(Obs(M)).
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The following Proposition 3.3.7 reveals the connection between the homology groups
of the complex of linear observables on constant curvature manifolds and the cohomol-
ogy counterparts of Calabi complex with compact supports. Indeed, H;(Dbs(M)) =
Ker. P/Im.Vg = Ker. B/Im.Vg = HC(M).

For the case of constant curvature background manifolds, the identification of the
homology groups of solution and of the linear observable complexes with suitable co-
homology groups of the Calabi complexes allows us to state a stronger result than
Proposition 3.3.5. Indeed, generalized Poincaré duality isomorphisms hold true between
Calabi complex and formal adjoint Calabi complex with compact supports and between
formal adjoint Calabi complex and Calabi complex with compact supports:

HC;(M) = HCY(M)*,  HCYM) = HC/(M)*. (3.74)

This result is proved in [Khal7, Corollary 11]. By making explicit the identities we
derived in Remark 3.2.10 and Remark 3.3.6, the isomorphisms (3.74) yield

Hy(Dbs(M)) = HCH(M) = HC(M)* = H_1(Gol(M))*, (3.75a)
H_1(Obs(M)) = HCy(M) = HCO(M)* = H,(Sol(M))*. (3.75b)
Y

Proposition 3.3.7. Suppose M is a physical spacetime of constant curvature, see
Definition 2.1.9. Then Ker. P = Ker. B, where P is the linearized gravity dynamical
operator of Equation (2.10) while B is a differential in the Calabi complex (3.51).

Proof. The homotopical operators in the Calabi complex (3.51) yield O = 2V gdiv I +
tr' B and thence Ph = —Itr’' (Bh) on T'(®%T*M). Let h € Ker,. B. It follows Ph = 0,
that is h € Ker, P. We conclude Ker. B C Ker, P. Vice versa let h € Ker. P. By using
the definition of P', P = P/ + 2IVgdivI , we find

P'h=—2IVgdivIh. (3.76)

We recall that the differential operator P’ is Green hyperbolic with retarded/advanced
Green operators G+. Hence,

h=G Ph=—-2G,IVsdivIh =2VsGY div Ih, (3.77)

where in the second step the identity (3.76) is inserted and in the last one it is used the
dual of Lemma 2.2.5. We recall GE is the retarded Green operator for the wave operator
O = V%V, on I'(T*M). Finally, consider that it holds Bh = 2BV sGY div Ih = 0 since
Vs and B are adjacent differentials in the Calabi complex (3.51). This shows that
h € Ker. B and thence Ker. P C Ker. B. The two opposite set inclusions imply the
sought equality, Ker. P = Ker, B. O

We want now to show that the observable complex comes endowed with a shifted
Poisson structure. In order to do this, we first need to consider the 1-shifting of the
complex Gol(M) itself.
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We recall that, for (V, dv) € Chg and p € Z, the p-shifting of (V, dv) is the complex
(Vpl, dv[p}), as per Definition 1.1.20, which reads explicitly

Vipln = Va—p,

(3.78)
AVl .— (—1)r dx_p .

The complex we get by shifting the solution one reads
(0) 1) v

_ (
Gol(M)[1] = (F((T*lj)W) A (@2 T M) SE T(R% T M) &8 F(I(“Z*)M)> . (3.79)

Then, let us consider the inclusion map ¢ : T'.(F) — T'(F'), which embeds compactly
supported sections in arbitrary sections, where F' can be either T*M or ®% T*M. These
maps allow us to define a chain map j : Obs(M) — Sol(M)[1]

Obs (M) T (T*M) B T (@2 T*M) L T (QLT*M) <22 T (T*M)
jl = Ll L\L —Ll —Ll
Sol(M)[1] D(T*M) ¢35~ D(®ET"M) 5 D(@FT"M) ¢ T(T"M)
(3.80)

We now define the shifted Poisson structure on Sol(M).

Definition 3.3.8 (Shifted Poisson structure). The shifted Poisson structure on the
solution complex Gol(M) is the chain map YT : Obs(M) @ Obs(M) — R[1] given by
the composition

Obs (M) ®@ Obs(M) i R[1]
id®j]
Dbs(M) @ Sol(M)[1] }c@(_,_) (3.81)
12

Obs (M) @ R[1] ® Sol(M) o R[1] ® Obs(M) @ Sol(M)
where v is the symmetric braiding in the monoidal category Chg, v: VW — W&V,
which is given by Equation (1.14).

Remark 3.3.9. In the definition we used the isomorphism Sol(M)[1] = R[1]@Sol(M).
This follows directly from Definition 1.1.18 of tensor product of chain complexes. In-
deed, for n € Z, we have

(R1] ® &ol(M)),, = R ® Sol(M)p—1 = Sol(M),—1 = Sol(M)[1], . (3.82)
Furthermore, the graded Leibniz rule entails that the differentials agree. v

Proposition 3.3.10. Let Obs(M) be the complex of linear observables for linearized
gravity on a physical spacetime M see Definition 2.1.9 and let Y : Obs(M)®@0Obs(M) —
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R[1] be the shifted Poisson structure from Definition 3.3.8. Then, the Poisson structure
reads explicitly

T(e0) == [ curaung™s "y = T(0.2). (3.83)
M
T(n,B) = /M NaBog "ty = T(B,m) , (3.83h)

foralle € Obs(M)g =T(REZT*M), a € Dbs(M); = T(RET*M), n € Dbs(M)_; =
L(T*M) and B € Obs(M)y =T (T*M).

Proof. We have to unravel Definition 3.3.8, keeping track of all the signs. Let us compute
the degree 1 of the tensor product Obs(M) ® Obs(M). It is sufficient to consider that
since the target complex of the chain map T is concentrated in degree 1. We have

(-1) 2) (0) (1)
(Dbs(M) ® Obs(M)), = (rc( M) ® FC(T*M)> ® (rc(&% T*M) @ To(®3 T*M))

gl) §0) 2) (-1)
® (Fc(®s T*M) @ To(®2 T*M)) ® (FC(T*M) ® FC(T*M)>.

In Equation (3.81), the chain map j acts on the second tensor factor, changing
the sign of elements in degrees 1 and 2. The second map sees the symmetric braiding
acting on Obs(M) ® R[1]. Since the factor R[1] is concentrated in degree 1, v attaches
a minus sign to elements in the odd degrees of Obs(M ). The combined action of these
two maps changes the sign of the tensor product of symmetric 2-tensor sections, leaving
unchanged the one of covector fields. Indeed,

(-1) (2) e
L (T*M) @T(T*M) 3 n® B —= 0@ (=8) — (=) @ (=8);

(0 ) " o
T(RLIT*M)QT(RIT*M)de@ar—5e® (—a) s e ® (—a);

(1) (0)

o T(RET*M)RT(RETM) 3 a®e ady a@e 2% (—a)@e;
o D(T"M) @T(T*M) 3 By fon 2% fa.

By applying the section pairing and thanks to its symmetry, the equations (3.83) of
the statement descend. O

Remark 3.3.11. Observe that the Poisson structure from Proposition 3.3.10 can be
interpreted physically as a pairing between observables for gauge fields and its antifields,
see Equation (3.83a), and between observables for ghost fields and its antifields, see
Equation (3.83b). v
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Our next aim is to construct the differential graded counterpart of the usual Poisson
structure. Thence, we need to unshift the structure T in order to get a pairing whose
target are real numbers concentrated in degree 0, instead of degree 1. In particular, we
expect this unshifted structure also to pair together gauge field observables, just like
the Poisson structure in Equation (2.53) does.

This construction relies on the introduction of some new maps we shall call re-
tarded /advanced trivializations. This name is rather evocative and, in fact, these maps
play a role very similar to that of retarded/advanced Green operators in ordinary field
theories.

First, let us introduce the following complex: It is the past/future compact analogue
of the complex of linear observables of Equation (3.65), i.e.

(=1) ) (0) 1) v ©)
Dbﬁpc/fc(M) = (ch/fc(T*M) <d7 ch/fc(®25 T*M) L ch/fc(®23 T*M) <;S ch/fc(T*M)

(3.84)
Consider now the chain map j defined in Equation (3.80). This factors through the
inclusion chain map ¢ : Obs(M) — Obs,, /(M) which is simply given by the inclusion
of compact sections in past/future compact ones. Therefore, we have the following
commutative diagram:

Obs (M) 7 Gol(M)[1]
g _— (3.85)
Dbspc/fc(M) -

The map jpe/fe : Obspe/ie(M) — Sol(M)[1] which appears in the triangle above is the
extension of the chain map (3.80) to sections with past/future compact support.

Let us now define the notion of retarded/advanced trivializations.

Definition 3.3.12 (Retarded/advanced trivialization). Let M be a physical space-
time and let Obs,. /(M) be the complex of past/future compact linear observables
defined in Equation (3.84). A retarded/advanced trivialization is a contracting homo-
topy of Obs,c/p.(M), i.e. it is a 1-chain A% € hom (Dbsc /5. (M), Obspe e (M))1 such
that AT = id. We recall that the mapping complex (hom,d) has been introduced in
Definition 1.1.10.

Remark 3.3.13. Explicitly, a retarded/advanced trivialization is a family of linear
homomorphisms A} : Obs,c/te(M)n — Obsye (M )ny1 for n € Z, such that it holds
dpy1 AF +AE d, =id, for all n € Z.

We can visualize a retarded /advanced trivialization by the dashed down-right point-
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ing arrows in the diagram below.

* div * P * ~V *
0 f\; ch/fc<T M) — £pc/fc(®%’ T M) %irpc/fc((g?g T M) %ch/fAT M) «——0

s AF < A o A N
l N lid T lid -~ J/id RN lid e
N T4 ~ St Y

0+— ch/fc(T*M) W ch/fc((g% T*M) T ch/fc(®%’ T*M) <_?S ch/fc(T*M) Q 0
(3.86)

From this diagram we infer that there are only three non-trivial components in a re-
tarded/advanced trivialization, namely A%, : Cpepe(T*M) — I‘pc/fc(@)?g T*M), A¥ -
Tpe/1e(@F T M) = Tpe/po(@FT*M) and AT : Tpe/ o (RFT* M) — Tpeyo(T*M). ¥

At this point, it is necessary to address the problem of existence and uniqueness of
retarded /advanced trivializations for the past/future compact linear observable com-
plex. Let us start with existence by presenting a concrete realization of them.

Proposition 3.3.14. Let M be a physical spacetime as per Definition 2.1.9. Denote
by Gy : ch/fc(®%’ T*M) — ch/fc(@% T*M) the extended retarded/advanced Green
operators for the differential operator P' = (=0 4 2Riem)I we introduced in Equa-
tion (3.48). Then, the maps

Af = —2G1Vs, AT =Gy, A :=2divGay, (3.87)
define a retarded/advanced trivialization for linearized gravity.
Proof. Observe that the choices in Equation (3.87) are consistent with the domains
and target spaces for the components of the 1-chain A*. In order to show that they

identify a contracting homotopy for Dbs,. (M), it is enough to check that the identity
OA* = id holds. Referring to diagram (3.86), one has to verify that

dive A%, =idp PCSINE (3.88a)
AT odivPoAF =idy @2 pe): (3.88b)
AfoP —VgoAf = idp @270 (3.88¢)
—AfoVs=idp, o) - (3.88d)

With Afl = —2G 1 Vg the identity (3.88a) is a by-product of Lemma 3.2.9.
Let us check the second identity by inserting Afl = 2G4+ Vg, A§ = (1 and the
identity P = P’ + 21V gdiv I:

—2G4+Vgdiv + (P/ +2IVgdivl)Gy = —2G1Vgdiv +id + 2IVgdiv IG 4
= —2G 4+ Vgdiv +id — 2IVsGY div
= —2G+Vgdiv +id + 2IG+IVgdiv = id, (3.89)
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where in the first step we used P’ o G4+ = id, while in the second and in third ones
Lemma 2.2.5 and its dual are respectively used. As far as the identity (3.88¢) is con-
cerned, we write

GLP — 2Vgdiv Gy = id + 2G LIV gdiv I — 2V gdiv G4
=id — 2V5GZ div I — 2Vgdiv G+
=id + 2Vgdiv IG+T — 2Vsdiv Gy = id, (3.90)

where again the identity G4 o P/ = id, Lemma 2.2.5 and its dual are used.
Finally, it remains to be proved the identity (3.88d). Let us use AF = 2div G4 and
let us compute

—2divGiVg = —2divI’G Vs = —2divIG4IVg
=2GYdivIVs =G0 =1id, (3.91)

where we used Proposition 2.1.11, Lemma 2.2.5 and the last identity in Lemma 2.1.13.
O

Let us consider the question of uniqueness of retarded /advanced trivializations. We
are going to show that those trivializations are unique up to homotopy. In the case
of ordinary field theory, e.g. for Klein-Gordon theroy, this corresponds to the usual
uniqueness of the retarded/advanced Green operator.

Lemma 3.3.15. In the same setting of the Definition 3.3.12, let Ai,./NXi be two re-
tarded/advanced trivializations for linearized_gravity, then there exists a 2-chain At e
hom (Dbspe /1. (M), Obspe (M), such that AT — AT =9\t

Proof. First, observe that all the homology groups of the complex Obs. /(M) are
trivial. This is an immediate consequence of the existence of a contracting homotopy
AT for that complex. See as a reference [Wei95]. In other words, Obspe /i (M) is quasi-
isomorphic to 0. Because all objects in the model category Chyg are both fibrant and cofi-
brant the mapping complex functor hom preserves quasi-isomorphisms (Lemma 1.1.19).
Thence, the homology of hom (Dbs,c (M), Db,/ (M)) is trivial too. Let AE A
be two retarded/advanced trivializations, then their difference AE — AT is closed:
A(A* — A*) = id —id = 0. Since hom (Dbsp (M), Obspe (M) has trivial homology
groups, it must be exact. Hence there exists A* € hom (Dbs /s (M), Obsyc g (M )y
such that A¥ — AT = 9AE, O]

Corollary 3.3.16. The retarded/advanced trivializations for linearized gravity are pa-
rameterized by 2-chains A* € hom (O b5 pe/tc (M), ObSpestc(M)),. In other words, all the
retarded/advanced trivializations for linearized gravity on a physical spacetime M, see
Definition 2.1.9 are of the form

A = —2G.Vs+ PAE,, (3.92a)
AT =Gy — VedT — \F div, (3.92b)
AF =2divGy — \EP, (3.92¢)
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for some linear maps )\(jf : ch/fc(@)% T*M) = Tpepe(T*M) and )\jfl :Lpespe(T*M) —
ch/fc(®% T*M)'

Proof. This is a consequence of Lemma 3.3.15 and Proposition 3.3.14.

Indeed, Proposition 3.3.14 provides us with a retarded/advanced trivialization,
namely AT = (-=2G+Vg,G+,2divGy). Then, from Lemma 3.3.15 we learn that for
any other trivialization A% it holds AT = AE + ONE, for some 2-chain A*. The formu-
lae (3.92) are obtained by making explicit the action of the boundary 9 on 2-chains.
Observe that the only non-zero components of a 2-chain A* are the ones starting from
the degrees —1 and 0. O

We have proved that, with general hypotheses on the background manifold M,
the past/future compact linear observable complex admits retarded/advanced trivi-
alizations and they are unique up to homotopy. This result generalizes the one con-
cerning Green operators for an ordinary field theory, but the non-uniqueness of the
trivializations introduces some subtleties. In fact, retarded/advanced Green operators
G+ are such that G, = G_ and, thence, a formally skew-adjoint causal propaga-
tor G = G4 — G_ may be defined. If a similar construction is requested for re-
tarded /advanced trivializations too, a criterion to select a pair of retarded and advanced
trivializations is needed.

We start with a lemma ensuring that a chain map can be obtained from the differ-
ence of retarded and advanced trivializations.

Lemma 3.3.17. Let AT € hom (Dbspe/tc (M), Dbsperc(M)), be a pair of retarded and
advanced trivializations. Then,

i. it holds j = 8(jpe/eAF) and T =0 ((iId @ (—, —))(y ®id)(id @ (jpe/eAF1))) 5
1. the difference
A = jpeATL — jeAT e € hom (Dbs(M), Sol(M)[1]), (3.93)

is a closed 1-chain, i.e. OA = 0. Moreover, it defines a chain map to the un-
shifted solution complex that we will denote with the same symbol, A : Obs(M) —
Sol(M).

Proof. Both proofs consist in straightforward checks. Let us start with item i.. Observe
that jc/f and ¢ are chain maps and thus they commute with the differentials of the
complexes:

djpc/fc,n = jpc/fc,nfl d, dip=1tn-1, (394)
for each n € Z. Then,

(a(jpc/chiL))n - d(jpc/chiL)n + (jpc/fCAiL)n—l d
= jpc/fc,n d A7:|L:[’n =+ jpc/fc,nA;—lL:—l dip
= jpc/fc,n(aAi)nLn = jpc/fc,nbn =Jn, (3'95)
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3.3. Classical observable complex and Poisson structures

where the last steps follow from Definition 3.3.12 and from Equation (3.85). Second
identity is proved in the same way. As an immediate consequence the homology classes
of both j and Y are trivial, namely [j] = 0 and [Y] = 0. Let us turn to the second part
of the lemma. The fact that A is a 1-cycle is a direct consequence of what has just been
proven. Indeed, A = 9(jpcATe) — O(jieA™t) = j — j = 0. We conclude by observing
that there is a chain isomorphism between hom (V, Wp|) and hom (V, W)[p] for each
pair of chain complexes V, W and p € Z. This isomorphism is concretely given by

hom (V, W1pl),, 2 (L : Vin = Wplmtn)mez — (L : Vin = Wingn—p)mez € hom (V,W),,_ .

(3.96)
Via this isomorphism, we can identify the 1-cycle A with a 0-cycle, i.e. a chain map,
to Gol(M), which we still denote with A. O

We are now ready to give a notion of compatible trivializations that mimics the
sought behavior of Green operators.

Definition 3.3.18. A pair A* € hom (Obs /5. (M), Obsper.(M)), of retarded and ad-
vanced trivializations is called compatible if the corresponding chain map A introduced
in Lemma 3.3.17, item ii., enjoys a formal skew-adjointness property with respect to
the pairing (3.66):

Dbs(M) @ Dbs(M) 924 Ops(M) @ Gol(M)
—A®idJ/ l(f,f) (3.97)
Sol(M) ® Obs(M) B

Lemma 3.3.19. The retarded/advanced trivializations explicitly written in Proposi-
tion 3.3.14 yield a compatible pair.

Proof. We recall the identities G* = —G, div® = —Vg, which follow from general
properties of Green operators and from Lemma 2.2.4. In order to check the skew-
adjointness property (3.97), we are interested only in degree 0:

(-1) (1)
(Dbs (M) ® Obs(M)), :(FC(T*M) ® To(®3 T*M))

(0) (0)
) (Fc(@% T*M) @ T.(®% T*M)) (3.98)

(1) (-1)
& (rc(@% T*M) ® PC(T*M)> .

Moreover, the chain map A has only three non vanishing components, namely A_; =
AJ_F1 — A", =-2GVg, Ag = — (Ag —Aa) =—G and Ay = — (Al+ _Af) = —2divG.
Here we dropped the inclusion maps ¢ since no confusion should arise.
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Let 61 ® g € To(RET*M) @ T(RET*M) and @ o € To(T*M) @ To(R%T*M).
Then,

€1 ®eg M £1 ® Apeg = —e1 ® Geg Iﬂ (61, —G62) = (G€1,€2)

€1 ®eg iﬂ) —Ape1 ®eg = Geg ® eg >l> €9 ® Gey 'ﬂ <€2,G61)

and

N« LN n®Aa=-2ndivGa 0, (n,—2divGa) = (—2GVgn, a)

n®ar ¥ A n@a=20Vineada®(—26Vsn) L (a,—2GVsn)
The identity on the last component follows from symmetry. O

We are ready to give the definition of an unshifted Poisson structure on the solution
complex Gol(M).

Definition 3.3.20 (Unshifted Poisson structure). Let Dbs, /(M) be the complex as
per Equation (3.84) and let A* € hom (Dbs,c /5 (M), Dbse (M), be a compatible
pair of retarded/advanced trivializations and denote with A the corresponding chain
map as per Lemma 3.3.17, item ii.. The unshifted Poisson structure on the solution
complex Gol(M) is the chain map 7 : Obs(M) @ Obs(M) — R defined by the compo-
sition
1
Obs (M) ® Obs(M) 2 : R
3.99
Obs(M) ® Sol(M)

where Obs (M) is the complex of linear observables of Definition 3.3.1.

Corollary 3.3.21. Let Gol(M) be the solution complex and let Obs(M) be the com-
plex of linear observables for linearized gravity on a physical spacetime M, see Defini-
tion 2.1.9. Let A* be the pair of compatible retarded/advanced trivializations of Propo-
sition 3.3.14 and denote with T : Obs(M) ® Obs(M) — R the corresponding unshifted
Poisson structure. Explicitly,

7(e1,€2) = —2 / (e1)ab(Ge2) g " g = —7(e2,€1) , (3.100a)
M
r(n,0) = —4 / na(div Ga)yg®py = Tcn). (3.100D)
M

for all e1,e9 € Obs(M)y = T(RLT*M), n € Obs(M)_1 = T(T*M) and a €
Obs(M); = T(R% T*M), where G is the causal propagator for the dynamical operator
P

Proof. The action of the unshifted Poisson structure has already been revealed while

proving Lemma 3.3.19. Formulae (3.100) are then obtained by making explicit the
integral pairings within. O
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3.3. Classical observable complex and Poisson structures

Remark 3.3.22. Observe that the unshifted Poisson structure from Corollary 3.3.21
can be interpreted physically as a pairing between two linear observables for gauge fields,
see Equation (3.100a), and between linear observables for ghost fields and antifields
ones, see Equation (3.100b). v

Remark 3.3.23. This unshifted Poisson structure induces a Poisson structure 7 :
He(Obs(M)) ® He(Dbs(M)) — R on homology groups. Its component of degree zero
100 @ Ho(Dbs(M)) ® Ho(Obs(M)) — R coincides with the usual Poisson structure
on on-shell gauge-invariant observables which we wrote in Equation (2.53). Remember
that the latter coincides with Ho(Obs(M)). v

Remark 3.3.24. By Definition 3.3.20 and Definition 3.3.18 of unshifted Poisson struc-
ture and compatible trivializations, respectively, it follows that 7 is (graded) antisym-
metric with respect to the braiding v in Chg. It means that it holds 7y = —7. This can
be proved by relying on the identity (id ® A)y = (A ® id):

™ =2(—,—)id®A)y=2(—,-)y(A®id) = —7. (3.101)

Thence, the unshifted Poisson structure 7 identifies canonically a chain map on the
differential graded exterior product Obs(M)AObs(M) := Obs(M)@Obs(M)/{vew =
—y(v ® w)}. With a slight abuse of notation we denote it by the same symbol,

7 :Obs(M)AObs(M) — R. (3.102)
In other words, we can say that it is a 0-cycle 7 € hom (A% Obs (M), R), of the corre-
sponding mapping complex. \Y,

There is a last problem we need to consider. The unshifted Poisson structure on
Obs(M) seems to depend on the choice of the particular pair of compatible trivial-
izations in Definition 3.3.20. Our question is whether different choices of compatible
trivializations lead to inequivalent unshifted Poisson structures. The following lemma
handle this question.

Lemma 3.3.25. Suppose Ai,Ki are two compatible pairs of retarded/advanced triv-
ializations. Denote respectively by 7,7 € }107111(/\2965(]\/[),]1%)0 the corresponding un-
shifted Poisson structures. Then there exists a 1-chain p € hom (A Obs(M),R), such
that T — 7 = Op. This implies that they identify the same homology class: [T]| = [1] €

Ho (mm%mmm).

Proof. Since A*, AT € hom (Dbspc (M), Dbsye (M), are retarded/advanced triv-
ializations, from Lemma 3.3.15 we find A* € hom (Dbs e/t (M), Obsye (M), such

that AT — AT = 9AE. Relying on the definition of unshifted Poisson structure, we
write:

2(=, =) (id® (Goe(A* = A = je (A~ = A7)2) )
=2(—,—) (i[d ® (JpcOATL — jrOA L))
9 (2(—, =) (Id ® (jpeATe — jreA ™)) = 0p, (3.103)
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where p = 2(—, —) (id ® (jpeATt — jreATt)) € hom (R? Dbs(M),R),. Let us consider
the decomposition of p in its (graded) symmetric and antisymmetric parts: p = pg +
PA = % p(d+~v) + % p (id — ). Since both 7 and 7 are (graded) antisymmetric, the
left-hand side of Equation (3.103) is (graded) antisymmetric and thus its right-hand
side must also be such. Therefore, it holds 7 — 7 = 9p4 and since p4 is (graded)
antysimmetric it defines a 1-chain in hom (A\? Obs(M),R),. O

Therefore, the possible unshifted Poisson structures one can construct all agree up
to homotopy. The concrete choice of the advanced/retarded trivializations is not so
important in the end. This feature will prove crucial in giving a consistent quantization
of our theory.
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4 Quantization

The aim of this chapter is to provide a consistent quantization scheme for linearized
gravity within the homotopical approach developed so far. We shall begin by con-
structing the algebra of quantum observables for linearized gravity by imposing the
canonical commutation relations (CCR). This construction is proved to be consistent
since it preserves quasi-isomorphisms and it sends homotopic Poisson structures in-
troduced in Section 3.3 to weakly equivalent dg-algebras. Then, we shall investigate
whether the developed theory is an Algebraic Quantum Field Theory (AQFT). We
shall also face the problem of the uniqueness of this quantization prescription, but only
a partial result is obtained. Our construction is proved to identify a unique AQFT on
each fixed spacetime whilst a non conclusive answer is given for the theory on the entire
spacetime category Locgjc.

4.1 Quantum observables

Up to now, our study of linearized gravity covered the classical theory with the intro-
duction of the complexes both of the solutions of the equations of motion (Section 3.2)
and of the classical observables (Section 3.3). Furthermore, an unshifted Poisson struc-
ture, reminiscent of the dynamics, has been introduced. We now want to provide a
quantization scheme for this theory.

As an initial step, we want to explain the conceptual framework in which the quan-
tization procedure shall be carried out. It is the so-called Algebraic Quantum Field
Theory formalism. To be precise, we shall work with a slight modification of this for-
malism in order to take into account all the additional information due to our homo-
topical approach. The algebraic approach to quantum field theory was first suggested
by Haag and Kastler in [HK64| and it was then refined by Brunetti, Fredenhagen and
Verch in [BFVO03]. For the homotopical version of AQFT we refer to [BSW19; BS19a;
BBS19].

The algebraic formalism is based on a sharp distinction between the construction
of the algebra of quantum observables for a theory and the introduction of a quantum
state. Dynamics and causal properties are all encoded in the algebra of observables,
whilst all non-local features and correlations are codified in the state.

To fix ideas, let us think about non-relativistic quantum mechanics. The algebraic
properties of the observables are encoded in the canonical commutation relation be-
tween the position and the momentum operators, ¢ and p respectively, namely [g, p] = i.



4. QQUANTIZATION

This commutation relation uniquely identifies the 3 dimensional Heisenberg algebra.
Thus, quantum observables are given as soon as their algebraic structure is specified.

Therefore, in order to give a quantization of a (free) field theory, it is first necessary
to build a suitable algebra of observables. The kind of algebra one actually needs
depends on the context. Having non-relativistic quantum mechanics as a reference,
one can realize that an appropriate choice in many situations is to consider a unital
algebra 2, over the field of complex numbers C, endowed with a compatible anti-
involution * : A — 2A. This is a unital x-algebra. There are situations in which it is
more convenient to restrict the attention to observables that are bounded (in a suitable
sense). In this case, the algebra of observables is often equipped with the structure of
a (unital) C*-algebra. In order to improve readability, we report here the definitions of
these structures.

Definition 4.1.1 (x-algebra). Let K be a field equipped with an involution z — Z.
A x-algebra over K is a K-vector space 2 equipped with an associative bilinear map
(A,B) — A - B and an anti-linear map * : A — 2, A — A* such that A** = A for all
Aeand (A-B)* = B*- A* for all A, B € . The anti-linearity condition means that
(zA+wB)* =zA*+wB* for all A, B € A and z,w € K. The algebra is unital if there
exists an element 1 € A such that 1-A=A-1= A for all A 2.

Remark 4.1.2. In our case the field K = C, where the involution is the complex
conjugation. v

Definition 4.1.3 (C*-algebra). A C*-algebra is a *-algebra 2 over C which is also a
Banach space whose norm ||—|| : A — R is compatible with the algebra product and
the s-involution, i.e. it holds ||A - B|| < ||A||||B|| for all A, B € 2 and ||A*- A|| = ||A?
for all A € 2.

The algebra of quantum observables has to capture information about the dynam-
ics of the corresponding physical field and this is achieved by employing the Poisson
structure to define the product of the algebra itself. We refer the reader to [BD15] for
an analysis in this algebraic formalism of explicit models such as the Klein-Gordon, the
Dirac and the Proca fields.

Once the algebra of observables has been defined, a quantum system is identified
by its algebraic state.

Definition 4.1.4 (Algebraic state). Let 2 be a unital (C')*-algebra of observables over
the field C of complex numbers. An algebraic state on 2 is a linear functional p : A — C
such that it is

i. positive: p(A*A) is a non-negative real number for all A € ;
ii. normalized: p(1) =1 for 1 € A the unit of the algebra.

Remark 4.1.5. The definition of an algebraic state on the algebra of quantum ob-
servables allows us to recover the usual description of Quantum Mechanics. Indeed,
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4.1. Quantum observables

the state p takes each self-adjoint element of the algebra of observables and it returns
its expectation values, measured on that state. In particular, a description in terms of
Hilbert spaces and self-adjoint operators on them, where expectation values are com-
puted according to the Born rule, can be recovered via the Gelfand-Naimark-Segal
theorem. See [Mor13]. v

In the following we will be mainly concerned with the development of a chain
complex analogue of the canonical commutation relations quantization in order to get
a suitable notion algebra of observables for linearized gravity. On the contrary, we shall
not explore the problem of finding explicit algebraic states for the theory.

Let us start by observing that our homotopical approach in studying the classical
theory of linearized gravity leads to a chain complex of linear observables, Obs (M), and
to an unshifted Poisson structure 7 : Obs(M) A Obs(M) — R on it. For comparison,
ordinary field theories lead to vector spaces endowed with Poisson structures as the
input for the CCR quantization procedure. Therefore, we need a slight modification of
the usual quantization procedure in order to take as an input a pair (V,7) consisting
of a chain complex V € Chgr and of an unshifted Poisson structure 7 : VAV — R.
Nevertheless, it is clear that the output of our construction has to be different. In
order to encompass the homotopical machinery introduced while formalizing linearized
gravity as a gauge theory, the structure that is more convenient for us is the one of a
differential graded unital %-algebra over the field C of complex numbers.

Definition 4.1.6. A differential graded unital x-algebra 2L over the complex numbers
C is a chain complex equipped with a chain map p : AR A — A, a degreewise antilinear
involution * : A — 2A and a unit 1 € A such that:

i. p is associative, i.e. (A u(B® C)) = p(n(A® B)® C) for all A, B,C € ;

ii. ¢ and the #-involution are compatible, namely ©(A ® B)* = u(B* @ A*) for all
A, B e,

iii. it holds pu(1 ® A) = u(A® 1) = A for each A € 2.

We are going to explain in some detail how to construct a differential graded unital
x-algebra €CR(V, 1) that implements the canonical commutation relations generated
by the unshifted Poisson structure 7.

First, we build the free differential graded unital *-algebra generated by the chain
complex V' € Chg. This is accomplished by taking the complexification of V', namely
Ve ==V ® C € Chg, and then by defining the complex

eV = PvEn, (4.1)
n=0

where we adopt the convention Vg)U := C. The algebra structure is given by juxtaposi-
tion
p: TV @TEV — TRV,
/

4.2
M(<U1®"'®Un)®(vl1®"'®U;n))3:U1®"'®Un®vi®"'®vma (4.2)
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forall vy, ..., vp,v],..., v, € V. Observe that 4 is a chain map since the tensor product
implements the graded Leibniz rule by definition. The unit in 7} g) V is given by 1 =
1e V(gao = C. The differential graded unital x-algebra structure is completed by the
C-antilinear *-involution defined by v* = v, for all v € V.

The algebra of observables which implements the canonical commutation relations is
constructed by taking the quotient of the free algebra T, gV by the two-sided differential
graded #-ideal Z(y, -y C Tg V generated by the (graded) canonical commutation relations

[v1, V2] = v ® vy — (—1)|”Hm|v2 ®wvy = i1(v1,v2)1, (4.3)

for all homogeneous elements v; € V,, and ve € V,,,. We denote this algebra by
CCR(V,7) ==TEV /Ly, - (4.4)

Let us make the construction explicit in our case. The CCR algebra of quantum observ-
ables for linearized gravity on a physical spacetime M (Definition 2.1.9) is thus given
by taking V' = Dbs (M), the linear observable complex from Definition 3.3.1, while 7 is
an unshifted Poisson structure, as in Definition 3.3.20. We have

Q:Q:%(Dbﬁ(M), 7') = ngb5(M)/I(Dbs(M),7—) . (4.5)

Observe that this CCR construction does not identify a unique differential graded unital
x-algebra of observables for the theory of linearized gravity. Indeed, in principle one gets
a different algebra for each possible unshifted Poisson structure on Obs(M). We now
want to explore whether these different algebras yield in different quantizations of the
theory. We shall prove that they are actually all equivalent algebras (in a weak sense
that we are going to specify) and in order to do this the result stated in Lemma 3.3.25
will be crucial.
First, let us clarify the categorical setting of our CCR quantization procedure.

Definition 4.1.7. The input and output categories of the CCR quantization procedure
depicted above are respectively:

i. the category of unshifted Poisson complezes PoChg, whose objects are pairs (V, 1)
consisting of a chain complex V € Chr and a chain map 7 : VAV — R, while
morphisms between objects (V,7) and (V',7') are chain maps f : V — V' which
preserve the Poisson structure, i.e. 7/(f A f) = T;

ii. the category of differential graded unital x-algebras dg*Alge, whose objects are
differential graded unital -algebras over the field C of complex numbers, (2, u,* ),
while morphisms from (2, px,*,1) to (2, /,* ,1’) are chain maps x : A — A’
which preserve the algebra multiplication, unit and the *-involution, i.e. u/(k(A)®

k(B)) = k(W(A® B)), k(1) = 1’ and x(A)* = k(A*) for all A, B € .
Lemma 4.1.8. The CCR quantization procedure identifies a functor

CCR : PoChg — dg*Alge . (4.6)
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Proof. The CCR quantization associates an object €CR(V, 1) € dg*Alge to each un-
shifted Poisson complex (V,7) € PoChg. Therefore, the action of €€R on the objects
of the category is well-posed. As far as the morphisms are concerned, we have to make
clear how €€R acts on them. Let f € PoChg((V, 1), (V’, 7). Then, €ER(f) has to be a
dg*Algc-morphism between €E€R(V,7) and CER(V', /). We set €CR(f) == D5, [&",
where with fc we mean the natural extension of f to a C-linear map. It remains to
be checked that it defines a morphism and that this association is functorial. The map
CCR(f) is well-defined since it preserves the canonical commutation relations (4.3):

CER(f) [v1,v2] = f(v1) ® flv2) — (=)™ f(vg) @ f(v1) = [f(v1), f(v2)]
= iT/(f<’U1) (024 f('UQ))]l = iT(vl, ’Ug)]l = [’Ul, ’Ug] , (4.7)

for each v1 € V,, and vy € V,,, where the second last step follows because f is a
PoChg-morphism. Furthermore, it is clearly a chain map and it is compatible with the
x-involution since, by definition, the latter coincides with the identity on elements of
both V and V’. Finally, €€R(f) is by construction compatible with multiplication. To
see functoriality of €CR we note that CCR(id) = id and CER(fog) = CCR(f) o CER(g)
for any f, g composable PoChg-morphisms. Both of them are direct consequences of the
definition of €ENR and of tensor product properties. O

In order to study the homotopical properties of our CCR, quantization we need to
endow both PoChg and dg*Alge with the structure of a homotopical category.

Definition 4.1.9. A homotopical category is the datum of a category C and a class of
morphisms W such that

i. every identity morphism id¢g, for C € C, is in W;

ii. the 2-out-of-6 property is satisfied, i.e. if hog, go f € W then also f, g, h,hogo f €
W.

Morphisms in W are called weak equivalences.

Remark 4.1.10. The definition of weak equivalences of a homotopical category is such
that all isomorphisms are weak equivalences. Indeed, if f € C(A, B) is an isomorphism,
there exists f~! € C(B, A) such that fo f~! =idp and f~!' o f = id4. By definition,
both are weak equivalences and 2-out-of-6 property implies, in particular, f € W. ¥

Observe that this homotopical structure is more flexible than that of the model
category. It requires only to declare a class of weak equivalences without bothering to
introduce compatible classes of fibrations and cofibrations or requiring the category to
be bicomplete.

Definition 4.1.11. The categories PoChg and dg*Alg provide homotopical categories
with the following choices of weak equivalences:

i. A morphism f : (V,7) — (V’,7') in PoChg is a weak equivalence if the corre-
sponding chain map f : V — V' is a quasi-isomorphism;
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ii. A morphism & : (A, u,*) — (Ql’,,u’,*/) in dg*Algc is a weak equivalence if its
underlying chain map ~ : 2 — 2’ is a quasi-isomorphism.

Remark 4.1.12. It may not be immediate to see that these definitions actually provide
classes of weak equivalences in the sense of Definition 4.1.9. In particular the 2-out-
of-6 property should be checked. However, it can be shown by relying on the model
structure of the category Chg, where K = R or C, depending on the case. In fact,
each morphism which has been declared to be a weak equivalence in Definition 4.1.11
is a weak equivalence also when it is seen as a morphism in the model category Chy.
Furthermore, the 2-out-of-6 property is satisfied by all the weak equivalences of a model
category. v

Thanks to the homotopical category machinery, we are able to prove that the CCR
quantization functor of Equation (4.6) has such homotopical properties that allow us to
give a consistent quantization of linearized gravity on a spacetime M. The main result
we are going to use is the following proposition proved in [BBS19]. We report here its
proof for the sake of completeness.

Proposition 4.1.13. Let €CR : PoChg — dg*Alge be the CCR quantization functor
of Lemma 4.1.8. It is a homotopical functor, when the domain and the target categories
are endowed with the homotopical structures from Definition 4.1.11, i.e. it sends weak
equivalences of PoChr to weak equivalences of dg*Alge. Moreover, if (V,7) € PoChy is
an unshifted Poisson complex and p € 1107111(/\2 V,R), is a 1-chain, then there exists a
zigzag

CCR(V,7) < Aw,rp) — CER(V, T + Ip) (4.8)
of weak equivalences in dg*Algc.

Proof. Consider the homotopical category of differential graded unital Lie x-algebras
dg*uliec, where weak equivalences are morphisms whose underlying chain map is a
quasi-isomorphism. It is proved in [BS19b] that the €€R functor (4.6) admits a factor-
ization through dg*uliec:

PoChg cen » dg*Alge

4.9
™ o )

dg*uliec

The functor Qy, : dg*uliec — dg*Algc is the unital universal enveloping algebra func-
tor, which is proved to be homotopical in [BS19b]. The Heisenberg Lie algebra functor
$eis : PoChr — dg*uliec is then explicitly given, for (V,7) € PoChg, by

$Heis(V,7) =Ved C, (4.10)
with Lie bracket [—, —]: (Ve ® C) ® (Ve & C) — Vi & C defined by
[v1 @ 21,v2 B 22] = 0D it(v1,v2), (4.11)
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for vi1,v9 € V and 21,29 € C. Finally, the unit is 1 := 0 & 1 and the *-involution is
determined by v* = v for all v € V' and by complex conjugation on the C component.
To a PoChg-morphism f : (V,7) — (V’,7') it is associated the morphism $eis(f) :
$eis(V, 7) — Heis(V/, 7') in dg*ulies determined by fc @id : Ve & C — Vi @ C, where
we recall that fc is the complexification of the chain map f. Also the Heisenberg Lie
algebra functor is homotopical too. It is proved in [BBS19] by observing that both
the operations (—) ® C and (—) @ C preserve quasi-isomorphisms and this implies
immediately that fc @ id is a quasi-isomorphism once f is a quasi-isomorphism. Since
CER results to be a composition of functors that preserve weak equivalences, it is a
homotopical functor and the first part of the proposition is proved.

Regarding the second part of the statement, it can be proved by showing that a very
analogous result holds true with respect to the Heisenberg Lie algebra functor $eis. The
sought result follows then due to the homotopical properties of Qy;;, and Equation (4.9).
Consequentely, we need to find a zigzag of weak equivalences in dg*uliec,

9eis(V, 1) <~ Hy,rp) — $Heis(V, 7+ dp), (4.12)
for all (V,7) € PoChg and p € hom (A*V, R),. The object Hy,, € dg*uliec reads

explicitly
H(V,T,p) = V(C @D@C, (413)

=1 .. (0
where D = [ C +9- (C> is the “disk” chain complex. The unital Lie structure is

completed by the unit 1 : =0 0&® 1 and by the Lie bracket
[V1 ® a1 @ 21,02 B ag @ z2] =0 (i0p(vi,v2)x +ip(vi,ve)y) B iT(vy,v2), (4.14)

where z ;=1 € Dg and y :=1 € D_;. Let s € R and denote with Z, C H(y,, ,) the
differential graded unital Lie x-algebra ideal generated by the relations

06z00=0000s, 0By®0=0. (4.15)

Observe that the quotient algebra H(y,; ,)/Zs is isomorphic to Heis(V, 7+ sdp). Finally,
consider the quotient map

Tg - H(V,T,p) — H(Vmp)/zs = ﬁeis(V,T + Sap) . (4.16)

By observing the relations (4.15), one realizes that 75 = idy @ gs, where ¢; : D®&C — C
is the map given by ¢s ((z12 + 22y) @ z3) := sz1 + z3. Therefore, the quotient map 75 is
a quasi-isomorphism for any s € R since the induced map on the homologies is nothing
more than identity. The zigzag in Equation (4.12) is finally obtained by taking s = 0
and s = 1. O

Corollary 4.1.14. Suppose A, A* € hom (Obs,c (M), Obsye (M), are two com-
patible pairs of retarded/advanced trivializations and denote the corresponding unshifted
Poisson structures by 7,7 : Obs(M) A Obs(M) — R. Then their two CCR quantiza-
tions CCR(Obs (M), 7) ~ CCR(Obs (M), T) are weakly equivalent via a zigzag of weak
equivalences in dg*Algc.
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Proof. This is a direct consequence of Proposition 4.1.13 and Lemma 3.3.25. Let A¥, A
be two pairs of compatible trivializations, then from Lemma 3.3.25 it follows that
the corresponding unshifted Poisson structures belong to the same homology class.
Hence, there exists a 1-chain p € hom (A\? Obs(M),R), such that 7 = 7 + dp. The
corresponding CCR quantizations are €CR(Obs(M),7) and CCR(Obs(M), T + Ip).
Finally, Proposition 4.1.13 guarantees the existence of a zigzag

Q:Q:%(Dbﬁ(M), ’7') e A(Dbs(M),T,p) —— QQiSR(Dbs(M), T+ ap) (4.17)
of weak equivalences in dg*Algc. O

Remark 4.1.15. Corollary 4.1.14 guarantees that our quantization prescription for
linearized gravity is consistent. Indeed, the CCR quantization which corresponds to
our choice of retarded/advanced trivializations from Proposition 3.3.14 is equivalent
via a zigzag of weak equivalences in dg*Alge to the quantization that one gets by
selecting any other pair of compatible trivializations, see also Corollary 3.3.16. v

We conclude this section by giving an explicit characterization of the quantum ob-
servable algebra corresponding to the unshifted Poisson structure 7 of Corollary 3.3.21.
Observe that elements in the differential graded unital *-algebra €CR(Obs (M), 7) from
Equation (4.5) are generated by elements in the first component of the direct sum (4.1),
i.e. Obs(M)c. Hence, we can introduce the following evocative notation for the gen-
erators of the CCR algebra: We denote the smeared linear quantum observables for
gauge fields by h(e) for ¢ € Obs(M)y = T.(®%T*M), the ones for ghost fields by
R(n) for n € Obs(M)_1 = T'o(T*M), and the ones for antifields by h¥(a) and Y¥(8) for
o € Obs(M); = T(RET*M) and 8 € Dbs(M)y = To(T*M). By making explicit use
of the unshifted Poisson structure 7 of Equations (3.100) in the (graded) commutator
of Equation (4.3), we find the following non-vanishing (graded) commutation relations
between algebra generators:

(e hen)] = =21 [ (1)an(Gen)eas™ 5y 1. (4.182)
M
F@). 5] =~ [ (@u(GVsmas™ g1 = R0 T )] . (180

for all 1,65 € Dbs(M)g = T (RET*M), o € Dbs(M); = [ (RLT*M) and 1 €
Obs(M)_ =T(T*M).

4.2 Homotopy AQFT axioms and linearized gravity

So far we have developed a quantization prescription for linearized gravity on a fixed
globally hyperbolic Ricci-flat Lorentzian manifold M. In the context of the algebraic
formalism, both in the sense of Haag and Kastler [HK64] and of Brunetti, Fredenhagen
and Verch [BFV03], the notion of a quantum field theory is related to a functorial as-
signment with respect to a suitable class of spacetime embeddings. To be more explicit,
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4.2. Homotopy AQFT axioms and linearized gravity

an Algebraic Quantum Field Theory is a functor that assigns the algebra of quantum
observables, belonging to a suitable category Alg, to each spacetime, object of a suitable
category C,

2A:C— Alg. (4.19)

The functor 2 satisfies certain axioms imposed due to physical reasons:

e The spacetime category C is endowed with a consistent notion of “causally dis-
joint” morphisms. This is correctly implemented by orthogonal categories as in-
troduced in [BSW20];

e A typical condition on the AQFT functor 2 is that it maps causally disjoint
morphisms into commuting ones. This is the so-called Finstein causality aziom
and it captures the idea that causally disjoint observables have to commute with
each other;

e Another common axiom is the time-slice axiom which encodes a concept of time
evolution by demanding an equivalence between the algebra corresponding to the
full spacetime and those of suitable subspaces of it.

We will come back to this topic later in this section and we will state these axioms
more accurately, adapting them to the homotopical framework we are working with.

We start by introducing the relevant categories which will appear in our construc-
tion.

Definition 4.2.1. The category Alg of the algebras of observables in Equation (4.19)
coincides with that of differential graded unital *-algebras dg*Algc of Definition 4.1.7.
The background spacetime category C may refer to different categories. Depending on
the context, we have C = Locg;c or C = Locgic./M, for M € Locg;., where

e Locp;. denotes the category of oriented and time-oriented globally hyperbolic
Ricci-flat Lorentzian manifolds of dimension n = 4 with morphisms f: M — N
given by all orientation and time-orientation preserving isometric embeddings
whose image f(M) C N is open and causally convex.

e For any fixed M € Locg;e we denote by Locg;./M the corresponding slice category.
Its objects are all morphisms m : M — M with target M in Locg;. and its
morphisms f: (m: M — M) — (n: N — M) are all commutative triangles

M—1 N

N (4.20)
M

in Locgjc. The slice category Locgic /H for M € Locgjc is equivalent to the cate-
gory of all causally convex open subsets U C M with morphisms given by subset
inclusion.
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Since all the relevant categories have been introduced we shall now give a pre-
cise definition of a homotopy AQFT by making explicit the homotopy version of the
AQFT axioms we need. Here we follow the formulation of homotopy AQFTSs presented
in [BBS19] for a setting very akin to ours. This is a particular case of a more general
operadic approach to AQFTs developed in [BSW19; BSW20].

Definition 4.2.2. A homotopy AQFT on Locgi. is a functor 2 : Locgjc — dg*Algc
such that the following axioms hold true:

i. Einstein causality: For every pair (fi : My — N,fo : My — N) of Locgic-
morphisms with causally disjoint images in N, the chain map

[2U(f1)(=), 2A(f2)(=)] : A(M1) © A(Mz) — 2A(N) (4.21)

vanishes, where [—, —] '= p— py : A(N) @A(N) — 2A(N) is the (graded) commu-
tator in A(N).

ii. Time-slice: For every Cauchy morphism, i.e. a Locrjc-morphism f : M — N
whose image f(M) C N contains a Cauchy surface of N, the map 4(f) : A(M) —
2A(N) is a weak equivalence in the homotopical category dg*Algc.

Remark 4.2.3. A homotopy AQFT on M € Locgic is given by replacing all the Locgic
occurrences in Definition 4.2.2 with the slice category Locgic/M. v

Remark 4.2.4. Observe that all homotopy AQFTs on Locgj. are chain complex ana-
logues of theories in the sense of Brunetti, Fredenhagen and Verch [BFVO03], while
homotopy AQFTs in the sense of Remark 4.2.3 are theories on a fixed physical space-
time M € Locgj. and are chain complex analogues of theories in the sense of Haag
and Kastler [HK64]. Note that every homotopy AQFT 2 : Locri. — dg*Alge on
Locgric also identifies a theory on a fixed M € Locgi. It is given by the functor
Agr = AUz - LocRiC/Mié dg*Algc obtained via precomposition with the forget-
ful functor 457 : Locric/M — Locgic. Explicitly, the latter is given on objects by
(m: M — M) — M and on morphisms by (f: (m: M — M) — (n: N — M)) — (f:
M — N). v

We consider now all constructions that we encountered in our reasonings and analyze
their functoriality on Locg;.. Let us start from the assignment of vector bundles to
a background manifold M. In Equation (3.14) the only vector bundles that appear
are the cotangent bundle T*M and the bundle of completely symmetric covariant 2-
tensors ®% T* M, together with integral pairings as per Equation (2.28). For notational
simplicity we will use F'(M) to denote both these bundles on a manifold M. Therefore,
I'F(M) will be the space of smooth sections of the bundle F(M). In order to see the
(contravariant) functoriality of the bundle F' one has to check that the assignment
I'F : Locgic®® — Vec, M — T'F(M) is functorial. Hence, we need to prove that each
Locgrjc-morphism f : M — N lifts to a linear morphism f* : 'F(N) — I'F(M). This
holds true for f*, the pullback between covariant tensor fields,

(f*t)p(vl, ‘e ,’Uk) = tf(p)(f*vl, oy f*vk) s (4.22)
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for all t € T(Q*T*N), P € M and v; € TpM, for i = 1,...,k. Here f, : TpM —
Tt(pyN denotes the pushforward of tangent vectors along the morphism f, namely, for
velTpM, fuv e Tf(P)N is

(fev)(@) = v(do [), (4.23)

for all smooth functions ¢ : N — R. Note that in Equation (4.22) the covariant k-tensor
t is seen as a multilinear map on k copies of the tangent space T'N. Furthermore, the
integral pairings are preserved under pullbacks since f is an isometry per hypothesis.

Definition 4.2.5. Let I'F,I'G : Locg;.°® — Vec be two natural spaces of sections of
vector bundles on Locgi.. Then a natural operator between them is a natural transfor-
mation K : T'F = I'G.

The following lemma turns out to be a crucial tool in proving the naturality of the
operators which appear in the chain complexes (3.14), (3.39) and (3.65).

Lemma 4.2.6. Suppose (M, grr) and (N, gn) are Lorentzian manifolds. Denote by V™
and VN the corresponding Levi-Civita connections. Then, for any isometric embedding
f: M — N the identity

VM(f*r) = f(VVr) (4.24)

holds true for all v € T(QF T*N).

Proof. Since f is an embedding the image f(M) C N is a submanifold of N, diffeo-
morphic to M. Moreover, if g := gN’ FOM) is the restriction on submanifold f(M) of the

metric on N, the corestriction of f on its image, f = f‘f (M)
morphism between the Lorentzian manifolds (M, gas) and (f(M), g). Denote by V the
Levi-Civita connection on f(M) with respect to the metric g. Since f is an isometric
diffeomorphism and relying on the uniqueness of Levi-Civita connection it is possible to
show that the identity f,VM f* =V holds true. Finally, let us consider the set inclusion
i: f(M)— N. Clearly it holds f =i o f and hence f* = f* oi*. Moreover, the fact
that 7 is a set inclusion entails that i*VY = Vi* on I'(Q" T*N). Then, the chain of
identities,

, is an isometric diffeo-

concludes the proof. O
Proposition 4.2.7. The operators (VA : T(T*M) — T'(®% T*M)) meLocg,. and (PM :
T(R%FT*M) — T(RFT*M)) peLocy,. are natural.

Proof. We need to prove that Vg and P induce natural transformations between the
suitable spaces of sections. Let f : M — N be a Locgjc-morphism. The naturality
condition for Vg translates to the commutativity of the square below.

(M) L 1(1T*N)

V% ivgf (4.26)

['(®%T*M) e I['(®%T*N)
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This is a direct consequence of Lemma 4.2.6 since the Killing operator Vg is defined as
the normalized symmetrization of the covariant derivative V. Concerning the dynamical
operator P, we recall that it reads P = (—divV 4+ 2 Riem +2IVgdiv) I. Since f : M —
N is an isometric embedding, taking the trace with respect to the metric is a natural
operation and, as a consequence, the trace reversal IM : T'(®%T*M) — I'(®%T*M)
also identifies a natural operator. This, together with the naturality of the Levi-Civita
connection and of the Riemann operator, Riem(f*gx) = f* Riem(gy), implies that the
identity f*P = Pf* holds true and thus naturality of the dynamical operator P is
proved. ]

Naturality of the cotangent bundle T*M and of the symmetric 2-tensor bundle
®?9 T*M, together with that of the differential operator Vg which encodes the action
of ghost fields on gauge fields, entails that the assignment M — €(M) of linearized
gravity field complexes as per Equation (3.14) is contravariantly functorial, i.e.

¢ : Locg;c”? — Chg. (4.27)

Observe that the commutativity of the square (4.26) is equivalent to saying that the
pullback f* of any Locgjc.-morphism f: M — N extends to a chain map f*: €(N) —
e(M).

Since the dynamical operator P is natural, as stated in Proposition 4.2.7, also the
assignment M +— Gol(M) of solution complexes as per Equation (3.39) is contravari-
antly functorial, i.e.

Gol: LOCRiCOp — ChR . (4.28)

In order to deal with the functoriality of the assignment of linear observable complexes
we need to consider also the pushforwards fi : Io(FM) — I'o(FN), with either F'(—) =
T*(=) or F(—) = ®%T*(—), of compactly supported sections along Locgjc-morphisms
f : M — N. By exploiting them, one realizes that the assignment M — Obs(M) is
functorial, i.e.

Dbs : LOCRic — ChR, (4.29)

where the action of the functor Dbs on Locgjc-morphisms f : M — N is given explicitly
by pushforwards on each degree, Obs(f) = f. : Obs(M) — Obs(N).

Finally, let us consider naturality of the integral pairings, as per Equation (3.66),
and of the shifted Poisson structure from Definition 3.3.8. The pairings are natural in
the sense that the square

Obs(M) @ Gol(N) L2 0bs(N) @ Gol(N)
id®f*l l(_’_)N (4.30)
Obs (M) ® Sol(M) W} R

commutes for all f : M — N morphisms in Locg;.. Furthermore, the chain map j of
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Equation (3.80) gives rise to the following commutative diagram

Obs(M) — 5 Dbs(N)
jﬂdl le (4.31)
Sol(M)[1] T Sol(N)[1]
for all Locgjc-morphisms f : M — N. By combining squares (4.30) and (4.31) and by
making use of Definition 3.3.8, one observes that the shifted Poisson structure T is
natural in the sense that the square

Obs(M) ® Obs(M) L R[1]
f*®f*l

‘ (4.32)
Obs(N) ® Obs(N) 7 R[1]

commutes for all f: M — N Locgj.-morphisms.

Remark 4.2.8. All functors and natural transformations on Locg;. that we have intro-
duced so far admit restrictions to the slice category Locgi./M for each M € Locgi.. They
are obtained via precomposition with the forgetful functor i3; : Locg;c /M — Locrijc
introduced in Remark 4.2.4. These restrictions are sufficient if one is interested in the
construction of a homotopy AQFT on a fixed spacetime M € Locgic, as opposed to a
theory on the entire category Locgijc. v

Our construction of a quantum observable algebra for any fixed spacetime M €
Locgic is performed by the CCR functor €€R : PoChr — dg*Algc, as per Equa-
tion (4.6). In order to give a homotopy AQFT on C, being this either Locg;. or the
slice category Locri./M, we need to introduce a suitable naturality condition for the
retarded/advanced trivializations of Definition 3.3.12. In Definition 3.3.20 unshifted
Poisson structures 7 are built in terms of compatible pairs of retarded/advanced triv-
ializations and a rule to perform the choice of such trivializations for any M € C in a
natural way is now requested.

Definition 4.2.9. Let C be either Locg;e or Locric/M, for M € Locgi.. A C-natural
retarded/advanced trivialization is a family

A:t = {Aﬁ € hom (DbEpc/fC(M)a Db‘ng/fC(M))l}MEC (433)
of retarded/advanced trivializations for each object M € C, such that
f*(jpc/chJiVL)f* = jpc/chJ\i/[L (4'34)

for each C-morphism f : M — N. We recall that the maps jj./r and ¢ have been
introduced in Equation (3.85).
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Remark 4.2.10. Note that the forgetful functor iUsz; : LocRic/M — Locgjc of Re-
mark 4.2.4 allows us to restrict any Locg;.-natural retarded/advanced trivialization to
a Locric /M—natural one, for each M € Locg;je. This means that, in general, it is easier
to construct natural retarded/advanced trivializations on the slice category Locgic/M
than on Locgiec. Y

We are now interested in proving that the retarded/advanced trivializations that
we wrote explicitly in Equation (3.87) arrange themselves in a Locgjc.-natural family.

Proposition 4.2.11. The retarded/advanced trivializations for the linearized gravity
theory of Proposition 3.5.14 define a Locrjc-natural retarded/advanced trivialization.

Proof. We write here for simplicity the explicit form of the retarded/advanced trivial-
izations of Proposition 3.3.14 for an object M € Locgic:

Af = 2GHVY L AL =GY, AG, =2divM GY, (4.35)

where G ch/fc(®% T*M) — ch/fc(®% T*M) is the retarded/advanced Green op-
erator for the differential operator P = (—DM + 2 Riem (gM)) IM . Observe that P’
satisfies the naturality condition f*P'N f, = P'"M for all Locgje-morphisms f : M — N.
Since pullbacks and pushforwards of Locgj.-morphisms do preserve the support prop-
erties of Green operators, the uniqueness of retarded/advanced Green operators for the
Green hyperbolic operator P’M imply that the naturality condition

FGY = GY (4.36)

holds true for all f : M — N morphisms in Locg;.. The reader is referred to [BG11] for
further details. This naturality condition, together with those for the Killing operator
and for the divergence operator (obtained via duality), implies that the identities in
Equations (4.35) define a Locpjc-natural retarded/advanced trivialization. O

Let us give a naturality axiom for unshifted Poisson structures. It is a general
condition given independently on the particular choice of the pair of C-natural re-
tarded/advanced trivializations.

Definition 4.2.12. Let C be either Locg;. or Locgric/M, for any M € Locgi.. A C-
natural unshifted Poisson structure is a family

7= {r" € hom (A*0bs(M),R)o} yscc (4.37)

of unshifted Poisson structures for each M € C, such that the naturality condition,
encoded in the diagram

Obs(M) A Dbs(M) T R
H (4.38)

ﬁAﬁi

Obs(N) A Obs(N) —— R
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commutes for all C-morphisms f : M — N. A C-natural homotopy between two C-
natural unshifted Poisson structures 7 and 7 is a family

pi={p"" € hom (A\*Obs(M),R)1} y/cc (4.39)

of 1-chains such that 7 — 7™ = 9pM for all M € C, and p™ (f. A fi) = pM, for all
C-morphisms f: M — N.

Remark 4.2.13. Similarly to Remark 4.2.10, we observe that the Locgj.-natural un-
shifted Poisson structures and homotopies are harder to construct than the Locg;c /M—
natural ones since all Locgj.-natural structures can be restricted to the Locgic /H—
natural ones via the precomposition with the forgetful functor iy : Locric/M —
Locrijc. \Y

Now we want to highlight the link between C-natural retarded/advanced trivial-
izations and C-natural unshifted Poisson structures. We are going to prove that C-
natural retarded/advanced trivializations identify C-natural unshifted Poisson struc-
tures. Furthermore, we shall observe that when C = Locgi./M, for M € Locgic, the
Locric/M-natural unshifted Poisson structure which is built from Locg;./M-natural
retarded/advanced trivializations is unique up to homotopy. This will allow us to state
a uniqueness result up to homotopy for the linearized gravity homotopy AQFT on
Locric/M.

Lemma 4.2.14. The following statements hold true:

1. Let C be either Locgi. or LocRiC/M, for any M € Locgic. Suppose AT be a C-
natural compatible pair of retarded/advanced trivializations. Then the component-
wise construction of an unshifted Poisson structure according to Definition 3.3.20
defines a C-natural unshifted Poisson structure 7;

ii. Let C = Locgrie/M, for any M € Locgi.. Then every Locgrie/M -natural unshiftefd
Poisson structure T is uniquely determined by an unshifted Poisson structure ™
on M and every Locric/ M -natural homotopy p is uniquely determined by a ho-

motopy pM on M;

iii. Let AT and AT be two LocRiC/M—natuml compatible pairs of retarded/advanced
trivializations, for any M € Locg;., then the corresponding Locri./M -natural
unshifted Poisson structures 7,7 from item ii. are homotopic, i.e. there exists a
Locric/ M -natural homotopy p such that T — T = Op.

Proof. Ttem 1i. follows immediately. Since A* is a C-natural compatible pair of re-
tarded/advanced trivializations, the definition of the unshifted Poisson structure in-
volves only natural maps and therefore it is natural too. Concerning items ii. and iii.,
it is helpful to observe that Definition 4.2.12 can be rephrased in terms of a categorical
limit. Recall that Obs : C — Chp is the functor that assigns chain complexes of linear
observables. Then consider the mapping complex

hom (A%Obs, R) := Jim hom (A*Obs(M),R) € Chg . (4.40)
eCor
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We note that a C-natural unshifted Poisson structure is a 0-cycle 7 € hom (A\? Obs, R),,
while a C-natural homotopy between two C-natural unshifted Poisson structures 7,7 €
hom (A? Obs, R), is a 1-chain p € hom (A\? Obs, R),, such that 7 — 7 = dp. Let us
assume C = Locg;./M. Then the slice category admits a terminal object, namely (id :
M — M). Hence, the opposite category (Locgrie/M)"" has an initial object. The limit in
Equation (4.40) is then isomorphic to the mapping complex hom (A? Obs (M), R). This
proves item ii.. Finally item iii. is a direct consequence of item ii. and of Lemma 3.3.25.

O

Remark 4.2.15. Let us take a moment to comment this lemma, in particular item iii..
If we consider a theory on Locgjc /M, for a M € Locgjc, namely we are interested in a
theory on a fixed spacetime M, Lemma 4.2.14 guarantees us that our construction will
provide a unique up to homotopy unshifted Poisson structure. Indeed, item iii. states
that any possible choice of a Locg;./M-natural compatible pair of retarded/advanced
trivializations induces a LocRiC/M—natural unshifted Poisson structure belonging to
the same homotopy class. A similar result may not hold true on the category Locgic.
Suppose that A*, AT are Locg;.-natural compatible pairs of retarded /advanced trivial-
izations. Denote by 7,7 the corresponding Locg;c.-natural unshifted Poisson structures.
Whenever the spacetime M € Locg;c is fixed, Lemma 3.3.25 provides us with a 1-chain
pM € hom (A\? Obs(M),R); such that 7 — 7™ = §pM . Nevertheless, it is not clear
if those homotopies can always be chosen to be Locgjc-natural. In other words, it may
be possible that different Locgj.-natural compatible pairs of retarded/advanced trivial-
izations identify non-homotopic Locgjc-natural unshifted Poisson structures. These in
turn may lead to non-equivalent quantum field theories. \Y,

Remark 4.2.16. Consider the Locgjc-natural compatible pair of retarded/advanced
trivializations from Proposition 4.2.11, whose components are written explicitly in
Equations (4.35). It defines via Lemma 4.2.14, item i., a Locgj.-natural unshifted
Poisson structure 7, whose components Tﬁ\é, for M € Locgjc, are given by Equa-
tions (3.100). v

Let us explain how to build the quantum field theory functor for our setting. Let C
be either the category Locg;ic or Locgic /M, for any M € Locgic, then suppose to select
a C-natural unshifted Poisson structure 7. Below we will choose the Poisson structure
T, of Remark 4.2.16 as the C-natural unshifted Poisson structure for our particular
model for quantum linearized gravity theory. The assignment M — (Obs(M), ps) of
Poisson chain complexes defines a functor

(Obs, 7) : C — PoChg , (4.41)

whose action on C-morphisms f : M — N is given by pushforwards f, : Obs(M) —
Obs(N). Observe that they define PoChg-morphisms due to the naturality condition
on C as per Equation (4.38). The quantization is then achieved by post-composing with
the CCR quantization functor as per Equation (4.6). We get a functor

A = CCRo (Obs, 7) : C — dg*Algc (4.42)
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to the category of differential graded (unital) x-algebras.

Before proving that the choice of the particular C-natural unshifted Poisson struc-
ture 7, makes the corresponding functor Ay, = CCR(Obs, 7,¢) into a homotopy
AQFT in the sense of Definition 4.2.2 or Remark 4.2.3, we need to consider the ho-
motopical properties of this construction. Recall that we endowed PoChgr and dg*Algc
with the structure of a homotopical category by declaring the weak equivalences of
Definition 4.1.11. In order to analyze the homotopical properties of our quantization
we induce a homotopical structure on both the functor categories PoChﬂ% and dg*AIg(%.
These are the categories whose objects are functors from C to PoChg and dg*Algc,
respectively, while morphisms are natural transformations between those functors.

Definition 4.2.17. Let C be either Locg;. or Locgi./M, for any M € Locgic.

i. A morphism in PoChH% is a natural weak equivalence if all its components are weak
equivalences in PoChg;

ii. A morphism in dg*AIg((é is a natural weak equivalence if all its components are
weak equivalences in dg*Algc.

Remark 4.2.18. Note that as a consequence of Definition 4.2.2 and of the subsequent
Remark 4.2.3 we can introduce the category of homotopy AQFTs on C, hAQFT(C) C
dg*AIg(%, as the full subcategory of functors satisfying the homotopy AQFT axioms of
Definition 4.2.2. We can endow hAQFT(C) with the structure of a homotopy category,
with weak equivalences inherited from those of dg*AIg((C;. Hence, we declare a morphism
in hAQFT(C) a weak equivalence if and only if it is a natural weak equivalence of
dg*Alg. v

We can now extend the results of Proposition 4.1.13 to the context of functor
categories.

Proposition 4.2.19. Let C be either Locgie or Locric/M, for any M € Locgic. Then
the post-composition with the CCR functor defines a homotopical functor

CCR o (—) : PoCh§ — dg*AlgS, (4.43)

where domain and target categories are endowed with the natural weak equivalences of
Definition 4.2.17. Moreover, let (V,7) € PoCh$ and p € hom (A\*V,R), be a C-natural
1-chain. Then, there exists a zigzag

CER(V, 7) <= Agyrp) — CER(V, 7+ Dp) (4.44)

of natural weak equivalences in dg*AIg%.

Proof. Let us start by proving that €€ o (—) is homotopical. We need to check that
it sends natural weak equivalences of PoCh[% to natural weak equivalences of dg*AIg(%.
Since the homotopical structures of both PoChH% and dg*AIg(% are defined component-
wise, this is a direct consequence of the first part of Proposition 4.1.13.
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Let M € C, then the second part of Proposition 4.1.13 provides a zigzag
CQ%(V(M), TM) — A(V(M),TM,pM) - C@%(V(M), TM + 8pM) (445)

of weak equivalences in dg*Algc. All we have to check is that those are components
of natural transformations. We know from the proof of Proposition 4.1.13 that the
zigzag (4.45) is obtained by applying the functor Qy, : dg*uliec — dg*Alge to the
zigzag

Heis(V(M), M) <= Hy ap) v prry — Heis(V(M), 7 4 9p™M) (4.46)

of weak equivalences in dg*uLiec. The explicit expression for the object Hy (y) 0 pnr)
is written in the proof of Proposition 4.1.13. Let f : M — N be a C-morphism, then it
follows that the diagram

V(f)cdidedid

H(V(M),Tlu,pM) H(V(N),TN,pN)

ml lws (4.47)

Heis(V (M), ™ + s0pM) ————— Heis(V(N), 7V + s0p")
V(f)ceid
commutes for every s € R. By taking s = 0 and s = 1, one realizes that the arrows in

Equation (4.46) are components of natural transformations. This concludes the proof.
O

Corollary 4.2.20. Suppose Ai,Ki are two Locgie/M -natural compatible pairs of re-
tarded/advanced trivializations, for a fized M € Locpic. Denote the corresponding
Locric/ M -natural unshifted Poisson structures from Lemma 4.2.14, item i., by T and

7. Then the two functors A := CER(Obs, 7) ~ CCR(Obs, T) = A are weakly equivalent
via a zigzag of natural weak equivalences in dg*/—\lg(léocRi“/ M.

Proof. Lemma 4.2.14, item iii., guarantees that the two Locg;./M-natural unshifted
Poisson structures 7 and 7 are homotopic. Then there exists a Locgijc /M—natural 1-
chain p € hom (/\2 Obs, R),, such that 7 = 7+ Jp. Finally, Proposition 4.2.19 provides

the sought zigzag of weak equivalences in dg*AIg(IéOCR‘C/ M. 0

We need to prove that our particular prescription yields a homotopy AQFT. In
other words, let C be either Locg;. or Locg;c /M, for any M € Locgic, and 1, be the
C-natural unshifted Poisson structure defined by Lemma 4.2.14 item i. with respect to
the C-natural compatible pair of retarded /advanced trivializations for linearized gravity
theory of Proposition 4.2.11. Then, consider the functor

Ara = CCR o (Obs, ,) : C — dg*Alge (4.48)

which assigns the CCR algebra of quantum observables for linearized gravity to each
spacetime M € C. We have to check that 2pq € hAQFT(C), namely that it satisfies
Einstein causality axiom and the time-slice axiom, c¢f. Definition 4.2.2.

74



4.2. Homotopy AQFT axioms and linearized gravity

In order to do it we shall follow the same strategy of [BBS19]. This consists in
checking suitable, easier to prove, conditions on the functor (Obs,,g) : C — PoChg
which imply the aforementioned hAQFT axioms. The next lemma goes in this direction.

Lemma 4.2.21. Let C be either Locgrj. or LocRic/M, for any M € Locric, and consider
a functor (V,7): C — PoChg. Then,

i. If for every pair (fi : My — N, fa : My — N) of C-morphisms with causally
disjoint 1mages the chain map

T(f1. ® fo,) : V(M) @ V(My) — V(N) (4.49)

vanishes, then the functor A = €€R o (V,7) : C — dg*Algc satisfies Einstein
causality;

ii. If for every Cauchy morphism f: M — N the chain map f.: V(M) — V(N) is
a quasi-isomorphism, then functor 2 = €&€Ro (V,7) : C — dg*Algc satisfies the
time-slice axiom.

Proof. Item 1i. follows directly from the explicit form of the canonical commutation
relations in Equation (4.3). In fact, it is immediate to realize that

[RA(f1)vr, A(f2)va] = iT(frv1 ® fa,v2)1 =0, (4.50)

for any homogeneous elements vy € V (M), and vy € V(Ma),y,, for n,m € Z. The
time-slice axiom requires that, for any Cauchy morphism f : M — N, the map
A(f) : A(M) — 2A(N) is a weak equivalence in dg*Alge. Under the hypotheses of
item ii. the PoChg-morphism (V,7)(f) is a weak equivalence in PoChg in the sense of
Definition 4.1.11, item i.. Since the CCR functor is homotopical, see Proposition 4.1.13,
the map CCR(V,7)(f) is a weak equivalence in dg*Algc and therefore the time-slice
axiom is fulfilled. O

We start by proving some preliminary lemmas that we are going to use to prove
that 21, satisfies the time-slice axiom.

Lemma 4.2.22. Let (N, g) be a globally hyperbolic Ricci-flat manifold and MCN
a causally convex open submanifold of N which contains a Cauchy surface of N. Let
us consider on M the metric 9‘1\7 given by the restriction of g. Then, any Killing field

X € F(T*M) on the submanifold M admits an extension to a Killing field x € T'(T*N)
on the entire manifold N.

Proof. Let x € F(T*M ) be any Killing field on the submanifold M. Hence, ¥ is in the
kernel of the Killing operator Vg : I'(T*M) — I'(®% T*M). By taking the contraction
with the metric of the identity Vgx = 0 we get V%x, = 0. Then, we calculate

0=2divVsx, = V' (Vexa + Vaxs) = Oxa + VaVoxs = Oxa, (4.51)
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where we used Ricci-flatness to commute the covariant derivatives. Since x is a solution
of the hyperbolic equation (4.51) on a globally hyperbolic manifold, it admits a unique
extension x € I'(T*N) such that 5{‘]\7 = x and Oy = 0. Furthermore,

0 =VsOy = (0 - 2Riem)VgXx, (4.52)

where the second step follows from Lemma 2.1.13. Since (OO — 2 Riem) is a normally

hyperbolic operator and Vg = 0 in M it follows that VX is everywhere vanishing in
N. Hence, x € Ker Vg C I'(T"N) and thus it is a Killing field on N. O

We recall that, according to our notation, Ker. (Im.) denotes the kernel (respec-
tively, the image) of operators restricted to compactly supported sections.

Lemma 4.2.23. Let N be a globally hyperbolic Ricci-flat manifold and M C Na
causally convexr open submanifold of N which contains a Cauchy surface of N. Then,
the map

L2 To(T* M)/ I, (divM) — To(T*N)/ Im, (div™)
€] —[¢] = [{],

where { € To(T*N) denotes the extension of ¢ € To(T*M) which is obtained by defining
it equals to zero on N \ M, is an isomorphism.

(4.53)

Proof. Let us start with a geometric construction that will be useful also in the following
proofs. Let 3 C N be a Cauchy surface entirely contained in M. Consider two other
Cauchy surfaces, ¥+ C M, in the future and in the past of X, respectively. Then, take
the cover of N given by I+(X+), where I+ (—) denotes the chronological past/future of
a subset. Note that I_(X4) N1 (3¥_) C M because of the causal convexity of M. Let
us introduce a partition of unity {x4, x—} subordinate to this cover, namely, smooth
scalar functions x4 € C°° (), such that supp x+ C I+(X+) and x4 +x— =1 on N.

In order to prove the surjectivity, let [] € Te(T*N)/Im, (div") be any equivalence
class and let i be an arbitrary representative. Let us set

7= 0x.G"n e T(T*N), (4.54)
where G7 : T.(T*N) — T'so(T*N) is the causal propagator for 0 = V2V,. The identity
7=0(1—-x)G7n=-0x_Gn, (4.55)

together with Equation (4.54), allows us to conclude that supp 77 C supp x4+ Nsupp x—N
J(suppn), hence 77 € I'.(T*N) has compact support in M. Consequently, the restriction

of 77 to M identifies uniquely an equivalence class [7j] € To(T* M)/ Im,. (div*). Observe
that [] = [n]. In fact,

i —n=0x4G™'n—0GTn
= Oy+(GY =GP — O(x4 + x=)Gn
= 0(—x+GY = x-GY)n
= div{-2IVs(x+G" + x-GP)n}, (4.56)
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4.2. Homotopy AQFT axioms and linearized gravity

where in the last step we used identity from Lemma 2.1.13. Equation (4.56) expresses
the difference between 77 and 7 in the form of the divergence of —2IVg(xG= + X,GJDF)n,
which has compact support in N as a consequence of the support properties of the
functions y+ and of the retarded/advanced Green operators G'£. This proves that ¢ is
surjective.

Concerning injectivity, we consider an equivalence class [] € Te(T* M)/ Im, (diV]\N/[ )
such that ¢[n] = [0] in T'o(T*N)/Im, ((}iVN). We have to prove that [n] = [0] as an

equivalence class in I'y(T*M)/Im, (div™). Let us consider the pairing (3.66) on the
level of homologies:

(=, —) : To(T* M)/ T, (div™) @ Ker (VA) — R, ([], x) = /Mnaxbgabug, (4.57)

where an arbitrary representative is picked in the equivalence class. Let x € Ker (Vé\/7 )
be any Killing field and let x € Ker (Vg ) be its extension to N given by Lemma 4.2.22.
Then, let us consider the pairing

([],x) = ([n], x) = 0, (4.58)

where we exploit the hypothesis that ¢[n] = [0]. Since x € Ker (ng ) is arbitrary and
the pairing (4.58) is non-degenerate, it follows that [n] = [0]. O

Lemma 4.2.24. Let N be a globally hyperbolic Ricci-flat manifold and M C Na
causally convexr open submanifold of N which contains a Cauchy surface of N. Then,
the map

/' Ker, PM/ Im, ng — Ker, PV /Im. V¥

4.59
[w] — w] = @], 9

where @ € To(R%T*N) denotes the extension of w € T'.(®% T*M) which is obtained
by defining it equals to zero on N \ M, is an isomorphism.

Proof. First, we introduce a partition of unity {x4, x—} as per the construction at the
beginning of the proof of Lemma 4.2.23.

Let us consider the surjectivity. Let [a] € Ker. PV /Im, V& be any equivalence class
and let us pick an arbitrary representative a € [a]. We want to show that

& = —2Vgdiv x4 Ga € T(RLT*N) (4.60)

identifies an equivalence class [a] € Ker, pM /Im, ng such that J/[a] = [a]. First,
observe that a € Ker, PV implies the identity

Pla=-2IVgdivia. (4.61)
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Hence,

a=—2Vgdiv (1 — x-)Ga = —2Vgdiv IGIa + 2V gdiv x_Ga
= 2VsG div [ + 2V gdiv y_Ga = —2GIV gdiv [ 4 2V gdiv y_ G
=GP a+2Vgdivy_Ga = 2Vgdivy_Ga, (4.62)

where Lemma 2.2.5 and its dual are used, together with the identity (4.61) and the
definition of the causal propagator GG. The same reasonings as in the proof of Lem-
mma 4.2.23 allow us to conclude that supp @ C supp x4+ N supp x— N J(supp «), hence

&’M € T.(R% T*M) More precisely &!M € Ker. PM | since
PME| - = (PN&)| =0, (4.63)

due to the identity PVg = 0 from Proposition 2.1.14. This is tantamount to saying
that [@] is a well defined equivalence class in Ker. PM /Im, VY. Surjectivity follows if
we show that [@] ~ [a]. Let us calculate,

a—a=—2Vgdivy, Ga — G P'a = —2Vgdivy;Ga + 2G4 IVgdiv I
= —2Vgdiv x4+ (G4 — G_)a+ 2Vgdiv IG; T
= —2Vgdiv x4+ (G4 — G_)a+ 2Vgdiv (x4 + x- )G
= Vgs{2div(x+G- + x-G1)a}, (4.64)

where Equation (4.61) is used in the second step and Lemma 2.2.5 and its dual in the
third one. The section 2div (x+ G- + x—G+)a has compact support as a consequence
of the support properties of the retarded/advanced Green operators G+ and the those
of the partition of unity {x,x—}.

As far as the injectivity is concerned, let [a] € Ker. PM/Im, V¥ be such that

/o] = [0]. Then, let [5] € Te(T*M)/ Im, (div™) be any equivalence class. It holds

76 ([, [od) = i ([, [a) = 0. (4.65)

By exploiting Equation (4.65) and selecting arbitrary representatives in both the equiv-
alence classes, we find

0=— /Nna2 (div Ga), g%y = —(n,2div Ga), (4.66)
M

for all n € T'.(T*M). Thanks to the non-degeneracy of the integral pairing, Equa-
tion (4.66) implies that divGa = 0. Lemma 2.2.5 yields the identity G- divIa = 0.
Hence, there exists a compactly supported section v € I'.(T *M ) such that div Ia = Oy
as a consequence of the general properties of the causal propagator. The last identity

of Lemma 2.1.13 allows us to write
divI(a—2Vgy) =0. (4.67)
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Observe that o — 2Vgy € FC(®S M ) has compact support since it is a sum of
compactly supported sections. Moreover, it holds

P(a—2Vgy) =0, (4.68)

as a consequence of a € Ker, PM and of Proposition 2.1.14. Equations (4.67) and (4.68)
entail that P’ («w — 2V g7y) = 0 and this implies in turn

a—2Vgy=0, (4.69)

on account of the exact sequence (2.32). We conclude that each representative in the
equivalence class [a] is in the image of Vg : FC(T*M ) = T(RET*M ) hence [a] =0
and the injectivity of ¢/ is proved. O

We are ready to prove the final result of this work which shows that our prescription
yields a homotopy AQFT for linearized gravity theory.

Theorem 4.2.25. Let m,q¢ be the Locgic-natural unshifted Poisson structure corre-
sponding to the Locric-natural compatible pair of retarded/advanced trivializations for
linearized gravity from Proposition 4.2.11. Then the functor Apg = €CRo (Obs, T1.¢) :
Locric — dg*Alge is a homotopy AQFT on Locgic, i.e. Arg € hAQFT(Locgic). Fur-
thermore, let M € Locric be any spacetime. Then the restriction 2[% = Arg Uz7 €
hAQFT (Locgi./M) defines a homotopy AQFT on M. These homotopy AQFTs on a
fized spacetime M are determined uniquely up to weak equivalences.

Proof. Lemma 4.2.14, item i., allows us to define a functor (Obs, 71,¢) : Locric — PoChg,
where Dbs : Locgjc — Chpg is the functor of Equation (4.29) which assigns the chain
complex of linear observables for linearized gravity. Hence, post-composition with the
CCR functor yields a functor g = €CR(Obs, T1.¢) : Locric — dg*Alge. We have to
prove that this functor fulfills the homotopy AQFT axioms of Definition 4.2.2. For this
purpose we exploit the sufficient conditions on (Dbs, 71,g) provided by Lemma 4.2.21.

Let us start with Einstein causality. The sufficient condition from Lemma 4.2.21
item i. is satisfied as a consequence of the explicit expression for 7, that one can
read from Equations (3.100) and of support properties of retarded/advanced Green
operators.

We need to check that the hypotheses of Lemma 4.2.21 item ii. are also fulfilled,
thus implying that g satisfies the time-slice axiom. Let f : M — N be a Cauchy
morphism and let us introduce the notation M := f(M) C N. Observe that f factorizes
through the subset inclusion i : M — N ,

M—>N

\ / (4.70)

where ]7: M — M is an isometric diffeomorphism, hence an isomorphism in Locg;c. Be-
cause of functoriality f, : Obs(M) — Obs(M) is an isomorphism in Chg. Therefore, the
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time-slice axiom follows if we show that the canonical maps Hy(ix) : H,(O bs(ﬁ ) —
H,(9Dbs(N)), [¢] — [¢], are isomorphisms. We recall that ¢ denotes the extension to
N of the compactly supported section ¢ which vanishes in N \ M.

From our analysis in Section 3.3, we found that the only non-trivial homologies
are those in degrees n = —1,0,1. Hence we restrict our attention to these cases.
Since H_1(iy) = ¢ : Do(T*M)/Im, (divM) — To(T*N)/Im, (divY) and Hy(i,) = ¢/ :
Ker. PM/Im, Vf‘g — Ker, PV /Im, Vfgv , the time-slice axiom is satisfied in degrees
n = —1 and n = 1 as a consequence of Lemma 4.2.23 and of Lemma 4.2.24, respec-
tively. -

It remains to check it in degree n = 0. We have Hy(i,) : Ker.. (div™)/Im, (PM) —
Ker, (div")/Im. (PN). Observe that it corresponds to the usual pushforward along
Cauchy morphisms of linear gauge invariant on-shell observables for linearized gravity.
This is an isomorphism as shown in [FH13]. We sketch the proof reported there. Let
us consider the partition of unity {x4+, x—} as per the construction at the beginning of
the proof of Lemma 4.2.23. Starting with surjectivity, let [¢] € Ker. (div")/Im, (PY)
be any equivalence class and let € be an arbitrary representative. We define

&= Px;Ge € T .(RLT*N), (4.71)

where G : To(R%T*N) — Ts.(R%T*N) is the causal propagator for P’, the linearized
gravity operator in the de Donder gauge, see Equation (2.25a). It is immediate to see
that supp & C supp x+. Observe that Ge is a solution of the linearized gravity equation
of motion in the de Donder gauge. Indeed, it holds

divIGe = -G dive =0, (4.72)

where we used Lemma 2.2.5 and ¢ € Ker, (div"). Then, PGe = P'Ge = 0. By exploiting
the identity x+ =1 — x—, we get

£€=P(1—x-)Ge = —Px_Ge. (4.73)
Hence, it also holds supp € C supp x— and consequently supp e C supp x+ M supp x— N
J(suppe). Therefore, £ is compactly supported in M and its restriction 51]\7 identifies

an element of T'.(®% T *M ). Moreover, 5‘]\7 € Ker, (divM) as a direct consequence of

gauge invariance. Hence, € uniquely identifies an equivalence class [€] € Hyp(Dbs (]T/f ).
In order to complete the proof we need to check that [€] = [¢] in Hy(Obs(N)). Then,
we compute

€ —¢e=Px+Ge — PG.e¢
= Px4+(G4+ —G-)e = P(x+ + x-)G4¢
= —Px+G_e — Px_-G4e¢
= P(—x+G- —x-G4)e, (4.74)

where in the first step we used divIG.e = 0 and P'G, = id, where id is the identity
on T',(®% T*N). In the last step it appears the section (—y;G_ — x_G4 )e which has
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compact support because of the general properties of the advanced/retarded Green
operators and of the support properties of the partition of unity {x, x—}. Hence [€] ~
[e] in Hp(Obs(N)).

As far as the injectivity is concerned, let [£] € Ho(Dbs(M)) such that Ho(i,)[e] = [0]
as an equivalence class in Ho(Obs(N)). This means that there exists a € I'.(®% T*N)
such that € = Pa. We exploit gauge invariance of the operator P in order to write «
in the de Donder gauge. Then, for any 8 € I'(T*N) the identity € = P(a+ Vgf3) holds
true, as a consequence of Proposition 2.1.14. Let o/ := a + VgB3. We want to find
such that div Ia/ = 0. This corresponds to solve equation

08 = —2divIa. (4.75)

Since N is globally hyperbolic such 8 € T's.(T*N) exists. This choice allows us to
write £ = P'a/, where P’ is the operator as per Equation (2.25a). By exploiting the
retarded /advanced propagator G for P’ we get

o =GLE. (4.76)
The support properties of retarded/advanced propagators imply that
) B B —
suppa’ C J_(supp&) N J4(suppg) C M, (4.77)

hence, of € To(®%T*N) with supp o’ C M. We conclude that & = P’a"M = Po/’M,
where the last step follows since divIa’ = 0 by construction. Hence, [¢] = [0] in
Hy(9Obs(M)) and Ho(iy) is proved to be injective.

Summing up, this shows that g : Locric — dg*Algc satisfies the homotopy AQFT
axioms, hence it is a homotopy AQFT on Locg;.. The restriction of the theory, QlLMG =
Arg 57, on any M € Locgic, identifies a homotopy AQFT on Locg;./M, as we have
observed in Remark 4.2.3. The uniqueness (up to natural weak equivalences) of our
construction for the restricted linearized gravity AQFTs, QILMG € hAQFT (Locgie/M),
for each M € Locgjc, is a consequence of Corollary 4.2.20. O

Remark 4.2.26. Let us go back to the question of the uniqueness up to natural weak
equivalences of our construction on Locg;.. The issue pointed out in Remark 4.2.15
extends to the context of AQFTs. It may be possible that there exists another Locgjc-
natural compatible pair of retarded/advanced trivializations that identifies a Locgjc-
natural unshift~ed Poisson structure non-homotopic to our 71,g. Moreover, this could
yield a model 2 € hAQFT (Locg;c) for linearized gravity that is not equivalent to 2pg.
N@ertﬁeless, Theorem 4.2.25 implies that for any M € Locg;j. the restricted theories
AM ,Ql% € hAQFT(Locgi./M) are naturally weakly equivalent homotopy AQFTs on
M. In other words, if there exist non-equivalent quantum theories for linearized gravity
on Locgic, they will differ subtly since their restrictions to any fixed spacetime are
equivalent. v
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Remark 4.2.27. Note that our model for linearized gravity as a homotopy AQFT on
Locgjc is not always naturally weakly equivalent to models that consider only gauge-
invariant on-shell observables, see e.g. [FH13; BDM14]. In fact, for an arbitrary back-
ground spacetime M € Locgi., the complex of linear observables Obs(M), as per
Definition 3.3.1, has non-trivial homology in degrees n = —1,0,1. This is in partic-
ular true for some non-simply connected physical spacetimes M of constant curvature,
see the discussions in Remark 3.2.10, Example 3.2.12 and Remark 3.3.6. Models that
take into account only gauge invariant on-shell observables consider only the zeroth
homology of Obs (M), ignoring information contained in the other ones. With our no-
tation, the latter coincide with theories whose x-algebra of quantum observables is
CER(Ho(Dbs(M), L)), This differs from our Apg(M) even on the level of the ze-
roth homology. In fact, if the x-algebra €ER(Ho(Obs(M), %)) is generated only by
linear gauge invariant on-shell observables, while the x-algebra Hy(2(pg(M)) contains
also classes corresponding to products of an equal number of ghost field observables in
H_1(Obs(M)) and antifield observables in H(9Dbs(M)). v
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Conclusions

In this work we studied linearized gravity as a homotopy algebraic quantum field theory
on Ricci-flat spacetimes. We built explicitly the 2;,q functor and we proved that it
defines a homotopy AQFT in the locally covariant framework. We tackled the problem
of the uniqueness of our quantization prescription, proving only that all restrictions to a
fixed Ricci-flat spacetime M € Locg;. are determined uniquely up to weak equivalences.

In particular, we introduced the groupoid for linearized gravity by attaching the
arrows given by gauge transformations to the configuration space of gauge fields. This
groupoid encodes all information about gauge symmetry of linearized gravity. This in-
formation was then condensed in the complex of off-shell gauge fields. We defined a
suitable action on this complex and through a critical locus construction we derived
the complex of solutions for linearized gravity. The complex of linear observables was
later introduced by duality and it was observed that it carries a natural shifted Pois-
son structure. We proved that this structure is trivial in homology and we trivialized
it by two kinds of homotopies which we called retarded/advanced trivializations since
they play a role similar to that of retarded/advanced Green operators in ordinary field
theory. The construction of these chain homotopies relied on the global hyperbolicity
of the background spacetime. Taking the difference between compatible retarded and
advanced trivializations allowed us to introduce an unshifted Poisson structure on the
complex of observables. This structure is crucial for the canonical quantization of lin-
earized gravity. We proved that the assignment to each Ricci-flat spacetime of quantum
observables obtained by implementing canonical commutation relations identifies a ho-
motopical AQFT. In other words, we proved that linearized gravity can be quantized
consistently within the homotopical approach.

We also showed that the unshifted Poisson structure is uniquely determined up
to homotopies on each fixed Ricci-flat spacetime. This fact allowed us to prove that
our quantization prescription identifies a unique up to weak equivalences homotopy
AQFT every time that one restricts the attention to a fixed background spacetime.
The same uniqueness result remains open when the theory is considered on the entire
spacetime category Locgjc. This means that we provided a construction of linearized
gravity as a homotopy AQFT on the category of Ricci-flat spacetimes, but this construc-
tion may still yield homotopy AQFTs that are not weakly equivalent. The (potential)
non-uniqueness of the quantum linearized gravity as a homotopy AQFT is linked to
properties of the category Locg;j. of Ricci-flat spacetimes.

Possible extensions and follow-ups of this thesis are manifold. Firstly, it is possible to



consider linearized gravity on non Ricci-flat spacetimes. This corresponds to considering
a cosmological constant A # 0 in Einstein’s equation. Since several solutions of physical
interest to Einstein’s equation, such as de Sitter spacetime, correspond to non-vanishing
A, it will be interesting to study how the presence of this additional term affects the
constructions we performed. Other extensions may go in the direction of constructing
algebraic states for homotopy AQFTSs in general, and for linearized gravity in particu-
lar. An open point in the homotopy AQFT approach is, indeed, how a suitable notion
of algebraic state should be introduced. We recall that an algebraic state is a crucial
piece in the description of a physical quantum system in the algebraic formalism as it
allows to recover the usual Hilbert space description of quantum theory, see Section 4.1.
In the homotopical approach the notion of algebraic state needs to be compatible with
the homotopical framework that we have described in the main part of this work. This
problem corresponds to the formalization and to the extension of methods, such as
Gupta-Bleuler formalism, which are ad hoc constructions for electromagnetism. Fur-
thermore, it will be useful to study explicit conditions for the construction of states
which fulfill physical consistency requirements. In the standard algebraic formalism
this consists in considering Hadamard states, which resemble the singularities of the
Minkowski vacuum state in the UV regime and ensure that the quantum fluctuations
of all observables are finite. Analogous conditions may be also demanded to states in
the homotopical formalism and a thorough analysis of this topic will be crucial in the
development of this approach.
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